Taylor Series

Taylor Series around the point x0=0 for basic elementary functions.

ex=1+x+x22!+...+xnn!+o(xn)=k=0nxkk!+o(xk);x0

sinx=xx33!+x55!+...+(1)nx2n+1(2n+1)!+o(x2n+2)=k=0n(1)kx2k+1(2k+1)!+o(x2n+2);x0y

cosx=1x22!+x44!+...+(1)nx2n(2n)!+o(x2n+1)=k=0n(1)kx2k(2k)!+o(x2n+1);x0

(1+x)α=1+αx+α(α1)2!x2+...+α(α1)...(α(n1))n!xn+o(xn);x0

11+x=k=0n(1)kxk+o(xn);x0

11x=k=0nxk+o(xn);x0

log(1+x)=xx22+x33+...+(1)n1xnn+o(xn)=k=0n(1)k1xkk+o(xn);x0

log(1x)=k=0nxkk+o(xn)x0.

tgx=x+x33+x515+o(x5)x0

arcsinx=x+k=1n(2k1)!!2kk!(2k+1)x2k+1+o(x2n+2),x0

Tags: