Taylor Series around the point x0=0 for basic elementary functions.
ex=1+x+x22!+...+xnn!+o(xn)=∑k=0nxkk!+o(xk);x→0
sinx=x−x33!+x55!+...+(−1)nx2n+1(2n+1)!+o(x2n+2)=∑k=0n(−1)kx2k+1(2k+1)!+o(x2n+2);x→0y
cosx=1−x22!+x44!+...+(−1)nx2n(2n)!+o(x2n+1)=∑k=0n(−1)kx2k(2k)!+o(x2n+1);x→0
(1+x)α=1+αx+α(α−1)2!x2+...+α(α−1)...(α−(n−1))n!xn+o(xn);x→0
11+x=∑k=0n(−1)kxk+o(xn);x→0
11−x=∑k=0nxk+o(xn);x→0
log(1+x)=x−x22+x33+...+(−1)n−1xnn+o(xn)=∑k=0n(−1)k−1xkk+o(xn);x→0
log(1−x)=−∑k=0nxkk+o(xn)x→0.
tgx=x+x33+x515+o―(x5)x→0
arcsinx=x+∑k=1n(2k−1)!!2kk!(2k+1)x2k+1+o―(x2n+2),x→0
Tags:
Derivative Table.
Table of Derivatives of Composite Functions.
Table of Higher Order Derivatives.
Table of Integrals
Taylor Series
Comparison of functions O(f) and o(f).