Table of Derivatives of Composite Functions.

c=0,c=const;

(u(x)α)=αuα1(x)u(x),xR,αR;

(au(x))=au(x)lnau(x),a>0,a1,xR;

(eu(x))=eu(x)u(x);

(logau(x))=1u(x)lnau(x),x>0;

(loga|u(x)|)=1u(x)lnau(x),x0;

(lnu(x))=1u(x)u(x),x>0;

(sinu(x))=cosu(x)u(x),xR;

(cosu(x))=sinu(x)u(x)xR;

(tgu(x))=1cos2u(x)u(x),xπ2(2n+1),Z;

(ctgu(x))=1sin2u(x)u(x),xπn,nZ;

(arcsinu(x))=11u2(x)u(x),|x|<1;

(arccosu(x))=11u2(x)u(x),|x|<1;

(arctgu(x))=11+u2(x)u(x),xR;

(arcctgu(x))=11+u2(x)u(x),xR;

(shu(x))=chu(x)u(x),xR;

(chu(x))=shu(x)u(x)xR;

(thu(x))=1ch2u(x)u(x),xπ2(2n+1),nZ;

(cthu(x))=1sh2u(x)u(x),xπn,nZ;

(arshu(x))=1u2(x)+1u(x),xR;

(archu(x))=1u2(x)1u(x),|x|>1;

(arthu(x))=11u2(x)u(x),xR;

(arcthu(x))=1u2(x)1u(x),xR.

Tags: