Trigonometric and exponential forms of a complex number.

Trigonometric form of a complex number:

For any complex number z=x+iy, the equality holds: z=|z|(cosφ+isinφ).(1) Here |z|=x2+y2, and φ satisfies the conditions: cosφ=xx2+y2,sinφ=yx2+y2,φ[0,2π).

The equality (1) is called the trigonometric form of the complex number z.

Examples:

Represent the following complex numbers in trigonometric form and plot them as points on the complex plane:

1. i

Solution:

Let z=x+iy=i, which means x=0 and y=1. Then |z|=x2+y2=1=1.

cosφ=01=0,sinφ=11=1φ=3π2.

Thus, z=cos3π2+isin3π2.

Answer: cos3π2+isin3π2.

2. 1i1+i.

Solution.

Let's express the number z=1i1+i in algebraic form:

1i1+i=(1i)(1i)(1+i)(1i)=12i+i21i2=12i11+1=2i2=i.

The trigonometric form of the number i was found in the previous example (1.435):

z=i=cos3π2+isin3π2.

Answer: cos3π2+isin3π2.

3. 1+cosπ7+isinπ7.

Solution.

Let z=x+iy=1+cosπ7+isinπ7, so x=1+cosπ7,,,y=sinπ7. Then|z|=x2+y2=(1+cosπ7)2+sin2π7= =1+2cosπ7+cos2π7+sin2π7=2+2cosπ7= =4cos2π14=2cosπ14.

cosφ=x|z|=1+cosπ72cosπ14=2cos2π142cosπ14=cosπ14.

sinφ=y|z|=sinπ72cosπ14=2cosπ14sinπ142cosπ14=sinπ14.

Thus, φ=π14.

From here, we find the exponential form of the complex number z=x+iy=1+cosπ7+isinπ7:

z=2cosπ14(cosπ14+isinπ14).

Answer: 2cosπ14(cosπ14+isinπ14).

Exponential form of a complex number:

The symbol eiφ denotes the complex number cosφ+isinφ. Using this notation, any complex number z=|z|(cosφ+isinφ) can be represented in exponential form as z=|z|eiφ.

Examples.

Represent the following complex numbers in exponential form:

4. 7+24i5.

Solution.

Let's express the number z=7+24i5 in algebraic form:

z=x+iy=7+24i5=75+245i.

|z|=(75)2+(245)2=49+57625=62525=25=5.

tgφ=yx=24575=247. Поскольку число z принадлежит первой четверти, то φ=arctg247.

Thus, z=5eiarctan247.

Answer: z=5eiarctan247.

5. sinαicosα.

Solution.

z=x+iy=sinαicosαx=sinα,y=cosα.

|z|=x2+y2=sin2α+cos2α=1.

tgφ=yx=cosαsinα=ctgα=tg(α+π2)=tg(α+3π2).

Additionally, the following conditions must be satisfied:

cosφ=x|z|=sinα;sinφ=y|z|=cosα.

From here, we find

φ=α+3π2.

Thus, z=sinαicosα=ei(α+3π2).

Answer: ei(α+3π2).

5. Express the numbers z1 and z2 in exponential form and perform the specified operations on them:

z1z2; z12z2, if z1=232i, z2=333i.

Solution.

Let's express the numbers z1 and z2 in exponential form:

|z1|=x2+y2=(23)2+(2)2=16=4.

tgφ=yx=223=13.

Since the number z1 belongs to the fourth quadrant, then φ1=arctan(13)=π6.

From here, z1=4eiπ6.

|z2|=x2+y2=32+(33)2=36=6.

tgφ=yx=333=3.

Since the number z2 belongs to the fourth quadrant, then φ2=arctan3=π3.

From here, z2=6eiπ3.

Next, we find z1z2 and z12z2:

z1z2=4eiπ66eπ3=24ei(π6π3)=24eiπ2=

=24(cos(π2)+isin(π2))=24(01)=24.

z12z2=(4eiπ6)26eπ3=166ei(2π6+π3)=83ei0=83.

Answer: 24,83.

Homework.

Represent the following complex numbers in trigonometric form and plot them as points on the complex plane:

1. 1i3.

Answer: 2(cos5π3+isin5π3).

2. 12+i32.

Answer: cos2π3+isin2π3.

3. sinπ3+icosπ3.

Answer: cosπ6+isinπ6.

Represent the following complex numbers in exponential form:

4. 512i.

Answer: 13eiarctan(125).

5. 34i.

Answer: 5ei(arctan(43)+π).

6. sinαicosα.

Answer: ei(α+3π2).

7. sinα+i(1cosα).

Answer: 2sinπ2eiα2.

8. Express the numbers z1 and z2 in exponential form and perform the specified operations:

z12z2; z2z1, if z1=3+i2, z2=88.

Answer: 16ei7π4; 2eiπ2.

Tags: complex numbers, exponential forms of a complex number, trigonometric forms of a complex number