The limit of a function, computing limits.

Definition 1. A number a is called the limit of the function f(x) at the point x0 (or as x approaches x0) if for every number ε>0, there exists a number δ>0 such that for all x satisfying the condition 0<|xx0|<δ, the inequality |f(x)a|<ε holds.

The number a is the limit of the function f(x) at the point x0, denoted as limxx0f(x)=a, if for every ε>0, there exists δ>0 such that for all x:0<|xx0|<δ|f(x)a|<ε.

The number a is not the limit of the function f(x) at the point x0, denoted as limxx0f(x)a, if there exists ε>0 such that for every δ>0, there exists x:0<|xx0|<δ|f(x)a|ε.

Properties of the limit:

1) If f(x) and g(x) have limits at the point x0, then the functions f(x)±g(x) and f(x)g(x) also have limits at the point x0, and

limxx0(f(x)±g(x))=limxx0f(x)±limxx0g(x);

limxx0(f(x)g(x))=(limxx0f(x))(limxx0g(x))

2) For any number C,limxx0(Cf(x))=Climxx0f(x)

3) If the functions f(x) and g(x) have limits at the point x0 and limxx0g(x)0, then the function f(x)g(x) also has a limit at the point x0, and

limxx0f(x)g(x)=limxx0f(x)limxx0g(x).

4) Let limxx0f(x)=a (f(x)a for xx0) and limyag(y) exist; then at the point x0, the limit of the composition g(f(x)) exists, and limxx0g(f(x))=limyag(y).

If the difference f(x)g(x) represents an indeterminate form of , or the quotient f(x)g(x) represents an indeterminate form of or 00, then the computation of limits is called "indeterminacy resolution."

Examples.

1) limx1x24x2x2=limx1(x24)limx1(x2x2)=14112=32.

2) limx2x24x2x2

limx2(x24)=44=0;limx2(x2x2)=422=0. Таким образом, имеем неопределенность вида 00.

limx2x24x2x2=[00]=limx2(x2)(x+2)(x2)(x+1)=limx2x+2x+1=43.

3) limxx24x2x2=[limx(x24)=limx(x2x2)=].

Следовательно limxx24x2x2=[]=limxx2x24x2x2x2xx22x2=1.

4) limx1x2+4x5x21=[00]=limx1(x1)(x+5)(x1)(x+1)=limx1x+5x+1=62=3.

5) limxx2+4x5x21=[]=limx14x5x211x2=1.

6) limx1x2+4x5x21=1450=.

7) limx(x3+3x2x2+1x)=[]=limxx3+3x2x3xx2+1= =limx3x2xx2+1=limx3xx21+1x2=3.

8) limx6x22x6=[00]=limx6(x22)(x2+2)(x6)(x2+2)= =limx6x24(x6)(x2+2)=limx61x2+2=14.

9) limx5x6x12+5x51=[]=limx51x61+5x71x12=5.

10) limx(x4+2x21x42x21)=[]=

=limx(x4+2x21x42x21)(x4+2x21+x42x21)x4+2x21+x42x21=

=limxx4+2x21x4+2x2+1x4+2x21+x42x21=

=[]=limx4x2x4+2x21+x42x21=limx41+2x21x4+12x21x4=2.

Some remarkable limits.

The computation of limits in many cases is carried out using two important formulas:

limx0sinxx=1;limx0(1+x)1x=e.

The following formulas are often used, which are consequences of the above-mentioned formulas.

limx(1+1x)x=e.

limx0loga(1+x)x=1lna,a>0,a1.

A special case when a=e: limx0ln(1+x)x=1.

limx0ax1x=lna,a>0.

In the special case when a=e: limx0ex11=1.

Thus, we can write down the following equivalent functions:

sinxtgxarctgxarcsinxx(x0);

1cosxx22(x0);

ex1ln(1+x)x(x0);

ax1xlna(x0);

loga(1+x)xlogae(x0).

Examples.

1)limx0sinaxx=limx0asinaxax=alimx0sinaxax=a.

Another method:

limx0sinaxx=[sinaxax(x0)]=limx0axx=a.

2)limx0arctgxx=[y=arctgx;x=tgy]=limy0ytgy=limy0ysinycosy=limy0cosysinyy=1.

3)limx0tg4xsinx=limx0(sin4x4x4xcos4xsinx)=4.

4)limx(x2x+1)x=limx((2x2x+1)2x)1212x=limx0((11+12x)2x)1212x= e1/2limx12x=0.

5)limx0ex2cosxsin2x=limx0ex21+1cosxx2=limx0ex21x2+limx01cosxx2= =[ex21x2,(x0);1cosxx22,x0]=

=limx0x2x2+limx0x2/2x2=1+12=12.

6)limx0(ln(e+tgαx))1/sinβx=limx0(ln(e(1+tgαxe))1sinβx=

=limx0(lne+ln(1+tgαxe))1sinβx=limx0(1+ln(1+tgαxe))1sinβx.

As x0, ln(1+tgαxe)tgαxe0. Therefore,

limx0(1+ln(1+tgαxe))1sinβx=

=limx0(1+ln(1+tgαxe))1ln(1+tgαxe)ln(1+tgαxe)1sinβx=limx0eln(1+tgαxe)sinβx=

=elimx0ln(1+tgαxe)sinβx=[ln(1+tgαxe)αxe,(x0);sinβxβx,(x0)]= elimx0αxeβx=eαeβ

7)limx0ctg2x(3cosx3)=limx03cosx3x2=limx03(3cosx11)x2=limx03(cosx1)ln3x2= limx03ln3(sin2x2)x2=6ln314=32ln3

Tags: Properties of the limit, computing limits, limit, limit of function, calculus, mathematical amalysis