The Euler and de Moivre's formulas. The n-th root of a complex number.

Euler's formulas:

cosφ=eiφ+eiφ2;sinφ=eiφeiφ2i

De Moivre's formula

If z=reiφ, then zn=rneinφ,or, in trigonometric form:

zn=rn(cosnφ+isinnφ).

Let a=reiφ, a0, be a fixed complex number. Then the equation zn=a, nN, has exactly n distinct solutions z0,z1,...,zn1, and these solutions are given by the formula zk=rnei(φn+2πnk)=rn(cosφ+2πkn+isinφ+2πkn), k=0,1,...,n1.(Here r is a real positive number) The numbers zk, k=0,1,...,n1, are called the nth roots of the complex number a and are denoted by the symbol an.

Examples:

1. Prove Euler's formula cosφ=eiφ+eiφ2.

Solution.

It is known that eiφ=cosφ+isinφ. Accordingly, eiφ=cos(φ)+isin(φ)=cosφisinφ.

From this, we find eiφ+eiφ=cosφ+isinφ+cosφisinφ=2cosφ.

Therefore, cosφ=eiφ+eiφ2. This is what needed to be proven.

Using de Moivre's formula, compute the following expressions:

2. (1+i)10.

Solution.

Let's express the number z=1+i in exponential form:

r=x2+y2=1+1=2.

Since the number z lies in the first quadrant, we have:

tanφ=yx=11=1. And φ=π4.

Thus, we can express the number z=1+i in exponential form: z=2eiπ4.

Now, using de Moivre's formula, we can find z10:

(1+i)10=(2eiπ4)10=(2)10ei10π4=

=32ei5π2=32(cos5π2+isin5π2)=32i.

Answer: (1+i)10=32i.

3. Using de Moivre's formula, express the function cos3φ in terms of cosφ and sinφ.

Solution.

cos3φ=e3iφ+e3iφ2=12((cosφ+isinφ)3+(cos(φ)+isin(φ))3)=

=12(cos3φ+3icos2φsinφ+3i2cosφsin2φ+i3sin3φ+

+cos3(φ)3icos2(φ)sin(φ)+3i2cos(φ)sin2(φ)i3sin3(φ))= =12(cos3φ+3i(1sin2φ)sinφ3cosφ(1cos2φ)isin3φ+ +cos3φ+3i(1sin2φ)sinφ3cosφ(1cos2φ)isin3φ)= =cos3φ+3isinφ3isin3φ3cosφ+3cos3φisin3φ= =4cos3φ3cosφ+3isinφ4isin3φ.

Answer: 4cos3φ3cosφ+3isinφ4isin3φ.

4. Find and plot on the complex plane all roots of the 2nd, 3rd, and 4th powers of unity.

Solution.

Let's express the number 1 in exponential form:

1=1e0i. That is, r=1,φ=0.

Next, using de Moivre's formula, we calculate the square root of unity:

z0=12ei(02+2π20)=e0=1.z1=12ei(02+2π21)=eiπ=cosπ+isinπ=1.

Image

We calculate the cube root of unity:

z0=13ei(03+2π30)=e0=1.

z1=13ei(03+2π31)=ei2π3=cos2π3+isin2π3=12+i32.

z2=13ei(03+2π32)=ei4π3=cos4π3+isin4π3=12i32.

Image

We calculate the fourth root of unity:

z0=14ei(04+2π40)=e0=1.

z1=14ei(04+2π41)=eiπ2=cosπ2+isinπ2=i.

z2=14ei(04+2π42)=eiπ=cosπ+isinπ=1.

z3=14ei(04+2π43)=ei3π2=cos3π2+isin3π2=i.

Image

Answer: Roots of the second power: z0=1;,,z1=1. Roots of the third power: z0=1;,,z1=12+i32;,,z2=12i32. Roots of the fourth power: z0=1;,,z1=i;,,z2=1;,,z3=i.

Find all values of the roots:

5. 1+i3.

Solution.

Let's express the number z=1+i3 in exponential form:

r=x2+y2=1+3=2.

Since the number z lies in the second quadrant, we have:

tanφ=yx=31=3 and φ=2π3.

Thus, we can express the number z=1+i3 in exponential form: z=2ei2π3.

Using de Moivre's formula, we calculate the square root of unity:

z0=2ei(2π6+2π20)=2eiπ3=2(cosπ3+isinπ3)=2(12+i32).

z1=2ei(2π6+2π21)=2eiπ3+π=2(cos4π3+isin4π3)= =2(12i32).

Answer: ±22(1+i3)

6 1i5.

Solution.

Let's express the number z=1i3 in exponential form:

r=x2+y2=1+3=2.

Since the number z lies in the third quadrant, we have:

tanφ=yx=31=3 and φ=5π3.

Thus, we can express the number z=1i3 in exponential form: z=2ei5π3.

Using de Moivre's formula, we calculate the square root of unity:

z0=25ei(5π45+2π50)=210eiπ4=210(cosπ4+isinπ4)=210(12+i12).

z1=25ei(5π45+2π51)=210eiπ4=210(cos13π20+isin13π20).

z2=25ei(5π45+2π52)=210ei21π20=210(cos21π20+isin21π20).

z3=25ei(5π45+2π53)=210ei29π20=210(cos29π20+isin29π20).

z4=25ei(5π45+2π54)=210ei37π20=210(cos37π20+isin37π20).

Answer: 210(cos(π4+2π5k)+isin(π4+2π5k)).

Homework:

1. Prove Euler's formula sinφ=eiφeiφ2i.

Using de Moivre's formula, calculate the following expressions:

2. (1+i)5(1i)3.

Answer: 2.

3 (1+i)8(1i3)6.

Answer: 14.

Using de Moivre's formula, express the following functions in terms of cosφ and sinφ:

4. sin3φ.

Answer: 3sinφ4sin3φ.

5. cos4φ.

Answer: cos4φ6cos2φsin2φ+sin4φ.

Find all values of the roots:

6. i

Answer: ±22(1+i).

7. 1.

Answer: ±22(1+i), ±22(1i).

8. 23+2i4.

Answer: 2(cos(π24+π2k)+isin(π24+π2k)).

9. 1+i36.

Answer: 26(cos(π18+π3k)+isin(π18+π3k)).

Tags: De Moivre's formula, Euler's formulas, complex numbers