The derivative of an inverse function.

Definition. Let the function y=f(x) be continuous and strictly monotonic in some neighborhood of the point x0, and let the derivative f(x0)0 exist at this point. Then the inverse function at the point y0=f(x0) has a derivative, which can be found using the formula (f1(y0))=1f(x0).

Examples.

Find the derivatives of the inverse functions (f1(y)).

1) y=x+x3.

Solution.

dydx=1+3x2dxdy=11+3x2.

Answer: xy=11+3x2.

2) Find (f1(0)) and (f1(65)), where y=x+15x5.

Solution:

If y=0, then:

0=x+15x50=x(1+15x4)

{x=0 1+15x4=0

{x=0 x4=5x=0.

If y=65, then 65=x+15x5x=1. (The function has a unique root because it is strictly monotonic).

y=1+x4x=11+x4. Thus,

x(0)=11=1;x(6/5)=11+1=12.

Answer: x(0)=1;,,x(65)=12.

3) y=2xcosx2,,,y=12.

Solution.

2xcosx2=12, hence x=0.

y=2+sinx2, therefore x=12+sinx2. Thus, x(12)=12.

Answer: x(12)=12.

4) y=0.1x+e0.1x,,,y=1.

Solution.

0.1x+e0.1x=1, hence x=0.

y=0.1+0.1e0.1x, therefore x=10.1+0.1e0.1x.

Thus, x(1)=1210=5.

Answer: x(1)=5.

Tags: calculus, derivative, derivative table, inverse function, mathematical analysis