The derivative of a function. Calculating first-order derivatives.

Definition: The first-order derivative of a function y=f(x) at the point x0 is defined as the limit

f(x0)=limΔx0f(x0+Δx)f(x0)Δx.

Key formulas for calculating derivatives.

c=0,c=const;

(xα)=αxα1, xR,α0;

(ax)=axlna,a>0,a1,xR;

(ex)=ex;

(logax)=1xlna,x>0;

(loga|x|)=1xlna,x0;

(lnx)=1x,x>0;

(sinx)=cosx,xR;

(cosx)=sinxxR;

(tgx)=1cos2x, xπ2(2n+1),nZ;

(ctgx)=1sin2x, xπn,nZ;

(arcsinx)=11x2,|x|<1;

(arccosx)=11x2,|x|<1;

(arctgx)=11+x2,xR;

(arcctgx)=11+x2,xR;

Rules for computing derivatives.

1) Let f=c1f1+c2f2+...+cnfn. Then f=c1f1+c2f2+...+cnfn.

2) Let f=f1f2. Then f=f1f2+f1f2.

3) If f=f1/f2, then f=f1f2f2f1f22.

4) If the function y=f(x) has a derivative at the point x0, and the function z=g(y) has a derivative at the point y0=f(x0), then the composite function z=φ(x)=g(f(x)), also has a derivative at x0, and φ(x0)=g(y0)f(x0).

Examples.

Find the derivative of the function y(x).

1) y=x3+x2+x+1

Solution.

y=3x2+2x+1.

2) y=7x13+13x7

Solution.

y=713x12+13(7)x8=91x1291x8=91(x12x8).

3) y=x25x+6x2+x+7

Solution.

y=(x25x+6)(x2+x+7)(x2+x+7)(x25x+6)(x2+x+7)2= =(2x5)(x2+x+7)(2x+1)(x25x+6)(x2+x+7)2= 2x3+2x2+14x5x25x352x3+10x212xx2+5x6(x2+x+7)2= =6x2+2x41(x2+x+7)2.

4) y=(x+1)tgx;

Solution.

y=(x+1)tgx+(x+1)(tgx)=tgx+x+1cos2x;

5) y=(a+bx)α

Solution.

y=α(a+bx)α1(a+bx)= α(a+bx)α1b;

6) y=1x31+x33.

Solution.

y=13(1x31+x3)23(3x2)(1+x3)3x2(1x3)(1+x3)2

7) y=lnln(x/2)

Solution.

y=1ln(x/2)(ln(x/2))=1ln(x/2)2x12=1xlog(x/2).

8) y=lnx2+ax4+b2+abarctgx2b

Solution.

y=x4+b2x2+a(x2+ax4+b2)+ab11+x4b2(x2b)=

x4+b2x2+a2xx4+b21/2(x4+b2)1/24x3(x2+a)x4+b2+ab11+x4b22xb=

=2x(x4+b2)2x3(x2+a)+2xa(x2+a)(x2+a)(x4+b2)=2x(a2+b2)(x2+a)(x4+b2).

9) y=xx

Solution.

y=(xx)=(elnxx)=(exlnx)=exlnx(xlnx)=exlnx(lnx+x1x)= =xx(lnx+1).

10) y=logx7

Solution.

y=(logx7)=(1log7x)=(log71x)=log72x1xln7=

1(lnxln7)21xln7=1xlnxlnxln7=1xlnxlog7x.

The derivative of a function defined parametrically.

Let functions x=x(t) and y=y(t) be defined in some neighborhood of t0, and parametrically define the function y=f(x) in the neighborhood of x0=x(t0). Then, if x(t) and y(t) have derivatives at the point t0 and if dx(t0)dt0, then the function y=f(x) at the point x0 also has a derivative, which can be given by the formula:

df(x0)dx=dy(t0)dtdx(t0)dt, yx(x0)=yt(t0)xt(t0).

Examples.

1) x=sin2t,y=cos2t,t(0,π/2).

Solution.

xt=2sint(sint)=2sintcost;

yt=2cost(cost)=2cost(sint).

yx=2cost(sint)2sintcost=1.

2) x=et;y=t3t(;+).

Solution.

yx=3t2et=3t2et.

3) x=acost;y=bsint,t(0,π).

Solution.

yx=bcostasintbactgt.

4) x=(t32t2+3t4)et,y=(t32t2+4t4)et.

Solution.

yx=(3t24t+4)et+et(t32t2+4t4)(3t24t+3)et+et(t32t2+3t4)= t3+t2t3+t2t1=t2(t+1)t2(t+1)(t+1)=t2t21.

5) x=ctg2t,y=2cos2t12costt(0,π/2). xy?

Solution.

xy=2sin22t4cos2t4sin2t2cost+2sint(2cos2t1))= 1sin2t(8sintcos2t+sint(2(12sin2t)1))=

18sin3tcos2t4sin5t+2sin3tsin3t=

1sin3t(8cos2t+4sin2t2+1)=1sin3t(4cos2t+3).

The derivative of a function defined implicitly.

If a differentiable function y=y(x) defined on some interval is implicitly given by the equation F(x,y)=0, then its derivative y(x) can be found from the equation ddxF(x,y)=0.

Examples.

Find the derivative of the function y(x).

1) x2a2+y2b2=1

Solution.

ddx(x2a2+y2b21)=0

2xa2+2yb2y=0,y=b2xa2y.

2) y5+y3+yx=0

Solution.

ddx(y5+y3+yx)=05y4y+3y2y+y1=0 y=15y4+3y2+1.

3) yx=εsiny

Solution.

ddx(yxεsiny)=0y1εcosyy=0y=11εcosy.

Tags: calculus, derivative, derivative table, mathematical analysis, table of derivative