Taylor's Formula.

Definition. Let the function f(z) be defined in a neighborhood of the point x0 and have derivatives up to (n1)th order inclusive in this neighborhood, and let f(n)(x0) exist. Then

f(x)=f(x0)+f(x0)1!(xx0)+f(x0)2!(xx0)2+...+ +f(n)(x0)n!(xx0)n+o((xx0)n) при xx0.

So f(x)=k=0nf(k)(x0)k!(xx0)k+o((xx0)n),xx0.

The polynomial Pn(x)=k=0nf(k)(x0)k!(xx0)k is the Taylor polynomial. rn=f(x)Pn(x) is the remainder term of the nth order Taylor formula.

For x0=0, f(x)=k=0nf(k)(0)k!xk+o(xn) - the Maclaurin formula.

Taylor formulas around the point x0=0 for basic elementary functions.

ex=1+x+x22!+...+xnn!+o(xn);x0

sinx=xx33!+x55!+...+(1)nx2n+1(2n+1)!+o(x2n+2);x0

cosx=1x22!+x44!+...+(1)nx2n(2n)!+o(x2n+1);x0

(1+x)α=1+αx+α(α1)2!x2+...+ +α(α1)...(α(n1))n!xn+o(xn);x0

11+x=k=0n(1)kxk+o(xn);x0

11x=k=0nxk+o(xn);x0

ln(1+x)=xx22+x33+...+(1)n1xnn+o(xn);x0

ln(1x)=k=0nxkk+o(xn)x0.

tgx=x+x33+x515+o(x5)x0

arcsinx=x+k=1n(2k1)!!2kk!(2k+1)x2k+1+o(x2n+2),x0

Examples.

Expand using the Maclaurin formula to o(xn) the function

1.e5x1

Solution.

e5x1=e5xe=k=0n(5x)kk!e+o(xn).

2.sin(2x+3)

Solution.

sin(2x+3)=sin2xcos3+sin3cos2x=

cos3k=0n(1)k(2x)2k+1(2k+1)!+sin3k=0n(1)k(2x)2k(2k)!+o(x2n+1)

3.cos(x2+2)

Solution.

cos(k)(x2+2)=12kcos(x2+2+π2k)

cos(x2+2)=k=0n12kcos(2+π2k)k!xk+o(xk).

4.112x

Solution.

112x=k=0n2kxk+o(xn).

5.13x+4

Solution.

13x+4=14134x+1=14k=0n(1)k(34)kxk+o(xn).

Computing limits using Taylor formula.

Let's find limx0f(x)g(x), where f(0)=g(0)=0. Assuming that the functions f(x) and g(x) can be expanded using the Maclaurin formula, we will limit ourselves to the first non-zero terms in the expansion of these functions:

f(x)=axn+o(xn), a0, g(x)=bxm+o(xm), b0.

If m=n, then

limx0f(x)g(x)=limx0f(x)g(x)=limx0axn+o(xn)bxn+o(xn)=ab;

If n>m , then limx0f(x)g(x)=0;

if m>n ,then limx0f(x)g(x)=.

Examples.

Compute the limits using the Taylor formula.

1. limx0ln(1+x)xx2.

Solution.

limx0ln(1+x)xx2=limx0xx22xx2=12.

2. limx0ex1xx2.

Solution.

limx0ex1xx2=limx01+x+x221xx2=12.

3. limx0cosx1+x22x4.

Solution.

limx0cosx1+x22x4=limx01x22+x44!1+x22x4=124.

4. limx0tgxsinxx3.

Solution.

limx0tgxsinxx3=limx0x+x33x+x33x3=23.

5. limx01+2tgxex+x2arctgxsinx.

Solution.

Let's expand the numerator using the Taylor formula:

tgx=x+x33+o(x3),x0

2tgx=2x+2x33+o(x3),x0

1+t=(1+t)12=1+12t18t2+116t3+o(t3),t0;

Thus,

1+2tgx=1+122tgx18(2tgx)2+116(2tgx)3+o(tg3x)=

=1+tgx12tg2x+12tg3+o(tg3x)=

=1+x+x3312x2+x32+o(x3)=1+x12x2+56x3+o(x3).

Given that ex=1+x+x22+x36+o(x3), using the Maclaurin formula, we find the numerator of the fraction as

1+2tgxex+x2= =1+x12x2+56x31xx22x36+x2+o(x3)= =23x3+o(x3),x0.

Next, we expand the denominator:

sinx=xx36+o(x3);

arcsinx=x+x36+o(x3).

Hence, arcsinxsinx=x33+o(x3).

Thus, the fraction can be represented as 23x3+o(x3)13x3+o(x3).

From here

limx01+2tgxex+x2arctgxsinx=2.

Answer: 2.

Tags: Maclaurin formula, Taylor polynomial, Taylor's Formula, calculus, differential, higher-order differentials, mathematical analysis