Solving systems of linear equations using matrix method.

Let's consider a system of n linear equations with n unknowns of the general form.

{a11x1+a12x2+...+a1nxn=b1a21x1+a22x2+...+a2nxn=b2..............................an1x1+an2x2+...+annxn=bn,(1)

or, in matrix form, AX=B, where

A=(a11a12...a1na21a22...a2n............an1an2...ann);

X=(x1x2...xn); B=(b1b2...bn).

If detA0, meaning the matrix A has an inverse, then system (1) has a unique solution given by X=A1B.

Examples:

Solve the following systems using the matrix method:

1. {3x5y=132x+7y=81 Solution.

The matrix A=(3527) is non-singular because

detA=|3527|=21+10=310. Therefore, the system has a unique solution X=A1B. Let's find the inverse matrix A1:

Let's find the cofactors of the corresponding elements of matrix A:

A11=(1)1+17=7;

A12=(1)1+22=2;

A21=(1)2+1(5)=5;

A22=(1)2+23=3.

From here, we find the adjugate matrix:

A=(7523).

A1=1detAA=131(7523)=(731531231331).

(xy)=A1B=(731531231331)(1381)=(73113+5318123113+33181)=

=(91+4053126+24331)=(167).

Answer: x=16; y=7.

2. {7x+2y+3z=155x3y+2z=1510x11y+5z=36

Solution.

The matrix A=(72353210115) is non-singular because

detA=|72353210115|=105165+40+90+15450=360. Therefore, the system has a unique solution given by

X=A1B. Let's find the inverse matrix A1:

Let's find the cofactors of the corresponding elements of matrix A:

A11=(1)1+1|32115|=15+22=7;

A12=(1)1+2|52105|=(2520)=5;

A13=(1)1+3|531011|=55+30=25;

A21=(1)2+1|23115|=(10+33)=43;

A22=(1)2+2|73105|=3530=5;

A23=(1)2+3|721011|=(7720)=97;

A31=(1)3+1|2332|=4+9=13;

A32=(1)3+2|7352|=(1415)=1;

A33=(1)3+3|7253|=2110=31;

From here, we find the adjugate matrix:

A=(74313551259731).

A1=1detAA=136(74313551259731)=(73643361336536536136253697363136).

(xyz)=A1B=(73643361336536536136253697363136)(151536)=

=(73615+433615133636536155361513636253615973615+313636)=(211).

Answer: x=2; y=1; z=1.

3. {x+y2z=62x+3y7z=165x+2y+z=16

Solution.

The matrix A=(112237521) is non-singular because

detA=|112237521|=3835+30+142=20. Therefore, the system has a unique solution

X=A1B. Let's find the inverse matrix A1:

Let's find the cofactors of the corresponding elements of the matrix A:

A11=(1)1+1|3721|=3+14=17;

A12=(1)1+2|2751|=(2+35)=37;

A13=(1)1+3|2352|=415=11;

A21=(1)2+1|1221|=(1+4)=5;

A22=(1)2+2|1251|=1+10=11;

A23=(1)2+3|1152|=(25)=3;

A31=(1)3+1|1237|=7+6=1;

A32=(1)3+2|1227|=(7+4)=3;

A33=(1)3+3|1123|=32=1;

From here, we find the adjugate matrix:

A=(1751371131131).

A1=1detAA=12(1751371131131)=(1725212372112321123212).

(xyz)=A1B=(1725212372112321123212)(61616)=

=(1726521612163726+11216+32161126+3216+1216)=(311).

Answer: x=3; y=1; z=1.

Homework:

Solve the systems of equations using the matrix method.

1. {3x4y=63x+4y=18.

Answer: x=2;y=3.

2. {2x+y=5x+3z=165yz=10.

Answer: x=1;y=3;z=5.

3. {4x1+4x2+5x3+5x4=02x1+3x3x4=10x1+x25x3=103x2+2x3=1.

Answer: x1=1;x2=1;x3=2;x4=2.

Tags: inverse matrix, matrix, matrix method, systems of linear equations