Projections of a vector. Direction cosines. Cauchy-Schwarz inequality.

Projections of a vector. Direction cosines.

The projection of vector a onto vector b is defined as the number Prba=|a|cosφ, where φ=(a,b)^ is the angle between vectors a and b, 0φπ.

The coordinates X,Y,Z of vector a in a rectangular basis coincide with the projections of vector a onto the basis vectors i,j,k respectively, and the length of vector a is equal to |a|=X2+Y2+Z2.

Numbers cosα=cos(a,i)^=XX2+Y2+Z2,

cosβ=cos(a,j)^=YX2+Y2+Z2,

cosγ=cos(a,k)^=ZX2+Y2+Z2, are called direction cosines of vector a.

The direction cosines coincide with the coordinates (projections) of its unit vector a0=a|a|.

Cauchy-Bunyakovsky Inequality.

The Cauchy-Bunyakovsky Inequality holds for any vectors in Euclidean space. |(x,y)|2(x,x)(y,y).

Examples:

1. Given vectors a1(1;2;0), a2(3;1;1), and a3(2;0;1), and a=a12a2+13a3. Calculate:

a) |a1| and coordinates of the unit vector a1,0 of vector a1;

b) cos(a,j)^;

c) The X coordinate of vector a;

d) Prja.

Solution.

a) |a1|=(1)2+22=5;

a1,0=a1|a1|=(1;2;0)5=(15,25,0).

b) cos(a1,j)^=a1y|a1|.

a1y=2;

|a1|=5.

Thus, cosa1,j^=a1y|a1|=25

c) a=2a12a2+1/3a3=(1;2;0)2(3;1;1)+1/3(2;0;1)= =(1;2;0)+(6;2;2)+(2/3;0;1/3)=(19/3;0;5/3).

From here ax=19/3.

d) Prja=ay=0.

Answer: a) |a1|=5, a1,0(15,25,0).

b) cos(a1,j)^=25;

c) ax=19/3;

d) Prja=0.

2. Find the coordinates of the unit vector a0, given a(6;7;6).

Solution.

a0=a|a|=(6;7;6)62+72+62=(6;7;6)121=(6;7;6)11=(611,711,611).

Answer: (611,711,611).

Find the vector x, which forms an angle of π/3 with the unit vector j and an angle of 2π/3 with the unit vector k, given that |x|=52.

Solution.

Let x=(x1,x2,x3). Then

cos(x,j)=x2|x|=x252=12x2=522=52.

cos(x,k)=x3|x|=x352=12x3=522=52.

Next, we find x1:

|x1|=x12+x22+x32=x12+(5/2)2+(5/2)2=52.

x12+502=50

x12=25

x1=±5

Answer: (±5,522,52).

Homework.

1. Given vectors a=2i+3j,b=3j2k,c=i+jk. Find

a) the coordinates of the unit vector a0;

b) the coordinates of the vector a1/2b+c;

c)the decomposition of the vector a+b2c with respect to the basis B=(i,j,k);

d) Prj(ab).

Answer: a)a0(213,313,0).

b) a12b+c=d(3,11/2,0);

c) a+b2c=2j;

d) Prj(ab)=6.

2. Find the length and direction cosines of the vector. p=3a5b+c если a=4i+7j+3k;b=i+2j+k;c=2i3jk.

Answer: а)p=154; cosα=9/154; cosβ=8/154; cosγ=3/154.

Tags: Cauchy-Schwarz inequality, vector, direction cosines, projections of a vector