L'Hôpital's Rule.

Theorem (L'Hôpital's Rule).

Let functions f(x) and g(x):

a) be differentiable in the vicinity of point a, except possibly at point a, where g(x)0 in this neighborhood;

b) simultaneously, functions f(x) and g(x) are either both infinitesimal or both infinite as xa;

c) there exists a finite limxaf(x)g(x).

Then limxaf(x)g(x) exists, and the equality limxaf(x)g(x)=limxaf(x)g(x) holds.

If functions f(x) and g(x) are differentiable at point a,

g(a)=f(a)=0, g(a)0, then limxaf(x)g(x)=f(a)g(a).

Examples:

1. limx1x512x3x1

We have an indeterminate form 00. Applying L'Hôpital's Rule, we obtain:

limx1x512x3x1=limx15x46x21=1.

2. limx0xarctanxx3

We have an indeterminate form 00. Applying L'Hôpital's Rule, we obtain:

limx0xarctgxx3=limx0111+x23x2=limx0x23x2(1+x2)=13.

3. limx1lnxx

We have an indeterminate form . Applying L'Hôpital's Rule, we obtain:

limx+lnxx=limx+1/x1/(2x)=limx+2x=0.

4. limx0sinxxcosxsin3x.

We have an indeterminate form 00. Recognizing that sinxx as x0, by L'Hôpital's Rule, we find

limx0sinxxcosxsin3x=limx0sinxxcosxx3=limx0cosxcosx+xsinx3x2= 13limx0sinxx=13.

5. limx1x1010x+9x55x+4.

We have an indeterminate form 00. Applying L'Hôpital's Rule, we get:

limx1x1010x+9x55x+4=limx110x9105x45.

Using L'Hôpital's Rule again, we find

limx110x9105x45=2limx1x91x41=2limx19x84x3=92.

6. limx+xαeβx, где α>0, β>0.

Let k=[α]+1; then αk<0.

Applying L'Hôpital's Rule k times, we obtain limx+xαeβx=limx+αxα1βeβx=...=limx+α(α1)...(αk+1)xαkβkeβx=0.

7. limx+lnαxxβ, where α>0, β>0.

Let lnx=t; then x=et and limx+lnαxxβ=limt+tαeβt=0 (example 6).

We have an indeterminate form 00. Applying L'Hôpital's Rule, we get:

8. limx+0xlnx

By transforming the 0 indeterminate form to form and applying L'Hôpital's Rule, we have

limx+0xlnx=limx+0lnx1/x=limx+01/x1/x2=limx+0(x)=0.

9. limx11x50e1/x2.

We have an indeterminate form of 00. Assuming 1/x2=t, we get

limx11x50e1/x2=limx1t25et=0.

10. limx0(1x2ctg2x).

Transforming the indeterminate form to the form 00 and using the asymptotic formula sinxx as x approaches 0, we get

limx0(1x2ctg2x)=limx0sin2xx2cos2xx2sin2x= =limx0(sinx+xcosx)(sinxxcosx)x2sin2x= =limx0sinx+xcosxxlimx0sinxxcosxx3.

Since

limx0sinx+xcosxx=limx0sinxx+limx0cosx=2,

and limx0sinxxcosxx3=13 (see Example 4), the required limit is 2/3.

Tags: L'Hôpital's Rule, calculus, differential, higher-order differentials, l'hopital's rule, mathematical analysis