Integration using variable substitution

Integration by substitution (change of variable).

Let a composite function f(ϕ(x)) be defined on some interval, and let the function t=ϕ(x) be continuous on this interval and differentiable at all of its interior points; then if the integral f(t),dt exists, then the integral f(ϕ(x))ϕ(x),dx also exists, and moreover

f(ϕ(x))ϕ(x)dx=f(t)dt|t=ϕ(x).(1)

This formula is called the substitution integration formula.

If there exists an inverse function x=ϕ1(t) for the function t=ϕ(x) on the interval under consideration, then formula (1) can be rewritten as

f(t)dt=f(ϕ(x))ϕ(x)dx|x=ϕ1(t), or, if we denote the original integration variable as usual by x, f(x)dx=f(ϕ(t))ϕ(t)dt|t=ϕ1(x).(2)

Formula (2) is usually called the variable substitution integration formula.

Examples:

Compute the integrals using an appropriate substitution:

1. 3+x,dx.

Solution.

3+xdx=[t=3+xdt=dx]=tdt=t12dt=t12+112+1+c= =2t3/23+c=2(3+x)33+c.

Answer: 2(3+x)33+c.

2.dxxln2x.

Solution.

dxxln2x=[t=lnxdt=dxx]=dtt2=t2dt=t2+12+1+c= =t11=1t+c=1lnx+c.

Answer: 1lnx+c.

3.dxa+bx.

Solution.

dxa+bx=[t=a+bxdt=bdx]=dtbt=1bdtt=1bln|t|+c= =1bln|a+bx|+c.

Answer: 1bln|a+bx|+c.

4.sin(lnx)dxx.

Solution.

sin(lnx)dxx=[t=lnxdt=dxx]=sintdt=cost+c=coslnx+c.

Answer: coslnx+c.

5.xdxx213.

Solution.

xdxx213=[t=x21dt=2xdxxdx=dt2]=dt2t3= =12t1/3dt+c=12t1/3+11/3+1+c=12t2/32/3+c=34t23+c= =3(x21)234+c.

Answer: 3(x21)234+c.

6.sinaxcos3axdx.

Solution.

sinaxdxcos3ax=[t=cosaxdt=asinaxdxsinaxd=dta]=dtat3= =1at3dt=1at3+13+1+c=t22a+c=12at2+c=12acos2ax+c.

Answer: 12acos2ax+c.

7.ex(7ex)2dx.

Solution.

exdx7ex=[t=7exdt=exdx]=dtt=ln|t|+c=ln|7ex|+c.

Answer: ln|7ex|+c.

Applying the specified substitutions, find the integrals:

8. dxx1x3,x=(1t2)1/3.

Solution.

dxx1x3=[x=(1t2)1/3dx=13(1t2)2/3(2t)dt]= =2t3(1t2)2/3dt(1t2)1/31(1t2)=2tdt3(1t2)2/3(1t2)1/3t= =2dt3(1t2)=23(12dt1t+12dt1+t)= =13(ln|1t|+ln|1+t|)+c=13ln|11x31+1x3|+c.

Answer: 13ln|11x31+1x3|+c.

9.dxx+x,x=t2.

Solution.

dxx+x=[x=t2dx=2tdt]=2tdtt2+t=2dtt+1= =2ln|t+1|+c=2ln(x+1)+c.

Solution: 2ln(x+1)+c.

Using suitable substitutions, find the integrals:

10.x(5x1)19dx.

Solution.

x(5x1)19dx=[x=t+15dx=15dt]=t+15t19dt5= =125(t20+t19)dt= =125(t2121+t2020)+c=125((5x1)2121+(5x1)2020)+c.

Answer: 125((5x1)2121+(5x1)2020)+c.

11.x+2x+1+1dx.

Solution.

x+2x+1+1dx=[x=t21dx=2tdt]=t2+1t+12tdt= =2t3+1t+1dt=2(t2t+1)dt=2(t33t22+t)+c= =2((x+1)33+(x+1)22+x+1)+c= =2((x+1)33+x+12+x+1)+c.

Answer: 2((x+1)33+x+12+x+1)+c.

12.dx3+ex.

Solution.

dx3+exdx=[x=ln(t23)dx=2tt23]=2t(t23)tdt=21t23dt= =2123ln|x3x+3|+c=13ln|x3x+3|.

Answer: 13ln|x3x+3|+c.

Homework.

Compute the integrals using an appropriate substitution:

1. (34sinx)1/3cosxdx.

2. chxshxdx.

3. cosx223sinx2dx.

4. ctgxdx.

5. cos(ax+b)dx.

6. sinxdxx.

7. dxcos(xπ4).

8. eαx1+e2αxdx.

9. dx53x2.

10. sinxdxcos2x+4.

11. dx4x2+7.

12. xdx4x2+7.

Applying the specified substitutions, find the integrals:

13. dxx4x2,x=2t.

14. e2xex+1,x=lnt.

Using suitable substitutions, find the integrals:

15. e3x1exdx.

16. xdx(3x)7.

17. dxxx2+1.

Tags: calculus, integral, mathematical analysis, variable substitution