Integration of trigonometric functions.

1. Integrals of the form cosmxsinnx,dx are found depending on the parity of the exponents m and n as follows:

a) If either m or n is odd, then a variable substitution is used:

t=sinx, for odd m;

t=cosx, for odd n,

along with the identity sin2x+cos2x=1;

b) If both m and n are even, then reduction formulas are used:sin2x=1cos2x2,cos2x=1+cos2x2,sinxcosx=sin2x2;

c) If m+n=2k,,,,kN, i.e., m+n is an even negative integer, then it is convenient to use substitutions

tanx=t and cotx=t.

2. Integrals of the form sinmxcosnx,dx, cosmxcosnx,dx, sinmxsinnx,dx are computed using transformations of the integrand according to the following formulas: sinmxcosnx=12(sin(mn)x+sin(m+n)x), sinmxsinnx=12(cos(mn)xcos(m+n)x), cosmxcosnx=12(cos(mn)x+cos(m+n)x).

3. Integrals of the form tanmx,dx and cotmx,dx are found using the formulas: tg2x=1cos2x1,ctg2x=1sin2x1.

4. Integrals of the form R(sinx,cosx),dx, where R(u,v) is a rational function of two variables, are transformed into integrals of rational functions of a new variable t by substituting t=tanx2. In this case, the following formulas are used: dx=2dt1+t2,sinx=2t1+t2,cosx=1t21+t2. If sinx and cosx under the integral contain only even powers, it is more convenient to use the substitution t=tanx.

5. Integration of hyperbolic functions is carried out similarly to the integration of trigonometric functions, and the following formulas are used: ch2xsh2x=1,shxchx=12sh2x, ch2x=12(ch2x+1),sh2x=12(ch2x1), 1th2=1ch2x,cth2x1=1sh2x.

If thx2=t, then

shx=2t1t2;cht=1+t21t2;dx=2dt1t2.

Examples.

Find the integrals of trigonometric functions.

1. sin3x,dx.

Solution.

sin3xdx=sin2xsinxdx=(1cos2x)sinxdx=[t=cosxdt=sinxdx]= =(1t2)dt=(tt33)+C=cosx+cos3x3+C.

Answer: cosx+cos3x3+C.

2. sin2xcos2xdx.

Solution.

sin2xcos2xdx=1cos2x21+cos2x2dx=1cos22x4dx=14sin22xdx= =141cos4x2dx=18(x14sin4x)+C.

Answer: 18(x14sin4x)+C.

3. dxcosxsin3x.

Solution.

dxcosxsin3x=1cos1/2xsin3/2xdx=cos3/2xcos2xsin3/2xdx= =1tg3/2xcos2x=[t=tgxdt=1cos2xdx]=1t3/2dt=t3/2dt= =t1/21/2+C=2tgx+C=2ctgx+C.

Answer: 2ctgx+C.

4. cosx2cosx3.

Solution.

cosx2cosx3=12(cos(1213)x+cos(12+13)x)dx= =12(cos16x+cos56x)dx=62sin16x+610sin56x+C= =3sinx6+0,6sin5x6+C.

Answer: 3sinx6+0,6sin5x6+C.

5. sinx3cos2x3dx.

Solution.

sinx3cos2x3=12(sin(1323)x+sin(13+23)x)dx= =12(sinx3+sinx)dx=32cos13x12cosx+C.

Answer: 32cosx312cosx+C.

6. dx3cosx+2.

Solution.

dx3cosx+2=[t=tgx2cosx=1t21+t2dx=2dt1+t2]=2dt(31t21+t2+2)(1+t2)= =2dt33t2+2+2t2=2dt5t2=2125ln|t5t+5|= =15ln|tgx2+5tgx25|.

Answer: 15ln|tgx2+5tgx25|.

7. sinx1+sinxdx.

Solution.

sinx1+sinxdx=[t=tgx2sinx=2t1+t2dx=2dt1+t2]=2t1+t21+2t1+t22dt1+t2= =4tdt(1+t2)(1+2t+t2)=4tdt(1+t2)(1+t)2 We obtained an integral of a rational function. Let's decompose the integrand into partial fractions. t(1+t2)(1+t)2=At+B1+t2+C1+t+D(1+t)2= =(At+B)(1+2t+t2)+C(1+t2)(1+t)+D(1+t2)(1+t2)(1+t)2= =t3(A+C)+t2(2A+B+C+D)+t(A+2B+C)+(B+C+D)(1+t2)(1+t)2. Next, by equating coefficients of like powers of t, we find A, B, C, and D.

{A+C=02A+B+C+D=0A+2B+C=1B+C+D=0{A=C2A=02B=1B+C+D=0{C=0A=0B=0,5D=0,5

Thus,

t(1+t2)(1+t)2=12(1+t2)12(1+t)2 From here, we find

4tdt(1+t2)(1+t)2=4(1211+t2dt12(1+t)2dt)= =2arctgt2(1+t)11+C=2arctgt+21+t+C.

Making the reverse substitution, we finally obtain sinx1+sinxdx=2arctg(tgx2)+21+tgx2+C=2x+21+tgx2+C.

Answer: 2x+21+tgx2+C.

8. 1+ctgx1ctgxdx.

Solution.

1+ctgx1ctgxdx=1+cosxsinx1cosxsinxdx=sinx+cosxsinxcosxdx= [t=sinxcosxdt=(cosx+sinx)dx]=dttdt=ln|t|+C=ln|sinxcosx|+C.

Answer: ln|sinxcosx|+C.

9. ch23xdx.

Solution.

ch23xdx=12(ch6x+1)dx=12(16sh6x+x)+C=112sh6x+12x+C.

Answer: 112shx+12x+C.

10. chx+1dx.

Solution.

From the formula cosh2x=12(cosh2x+1), we have chx+1=2chx2. Therefore, chx+1dx=2chx2dx=22shx2+C.

Answer: 22shx2+C.

Homework.

1. sin3xcos8xdx.

2. cos7xdx.

3. cos2xsin4xdx.

4. dxsin4xcos2x.

5. cos(x+π4)sinxcosxdx.

6. tg3xdx.

7. dxcosx3sin3x3.

8. sin3xcos5xdx.

9. sin10csin15xdx.

10. dx32sinx+cosx.

11. dx4sin2x7cos2x.

12. dx(sinx+4)(sinx1).

13. sh32xdx.

14. dxsh2xch2x.

15. dxchx1.

16. cth3xdx.

Tags: Integration of trigonometric functions, calculus, integral, mathematical analysis