Integration of irrational functions

Integrals of the form R(x,(ax+bcx+d)m1n1,(ax+bcx+d)m2n2,...)dx where R(x,y,z,...) is a rational function of its arguments, m1,,n1,,m2,,n2,... are integers, are evaluated using the substitution ax+bcx+d=ts, where s is the least common denominator of the fractions m1n1,,,m2n2,,,...

The computation of integrals of the form R(x,ax2+bx+c)dx, where R is a rational function of two arguments, is carried out using trigonometric substitutions as follows. By completing the square in the quadratic trinomial and subsequently substituting u=x+b2a, the original integral is reduced to an integral of one of the following three types:

1) R(u,l2u2)du,

2) R(u,l2+u2)du,

3) R(u,u2l2)du.

The latter integrals are transformed by trigonometric or hyperbolic substitution respectively:

1) u=lsint или u=ltht,

2) u=ltgt или u=lsht,

3) u=lsect или u=lcht

to integrals of the form R(sint,cost),dt or R(sinht,cosht),dt.

Integrals of the form dx(mx+n)rax2+bx+c(r=1,2) are reduced to the integrals discussed above using the substitution mx+n=1t.

Examples.

1. dx(5+x)1+x.

Solution.

We make the substitution x+1=t2. This yields dx(5+x)1+x=[x+1=t2t=x+1dt=12x+1dx]=2dt5+t21= =2dtt2+4=arctgt2+C=arctgx+12+C.

Answer: arctgx+12+C.

2.dxxx3.

Solution.

Делаем подстановку x=t6. Получаем dxxx3=[x=t6t=x6dt=16x56dx]=dxx5/6(x2/6x3/6)= =6dtt2t3=6t3dtt1=6(t2+t+1+1t1)= =6(t33+t22+t+ln|t1|)+C= =2x+3x3+6x6+6ln|x61|+C.

Answer: 2x+3x3+6x6+6ln|x61|+C.

3.dx(x3+4)x.

Solution.

dx(x3+4)x=dxx5/6+4x1/2=[x=t6t=x6dt=16x56dx]= =dxx5/6(1+4x1/3)=6dt1+4t2=6t2dtt2+4=6t2+44t2+4dt= =6t12arctgt2+C=6x612arctgx62.

Answer: 6x612arctgx62.

4. dx(x23)4x2.

Solution.

This is an integral of the second type. To solve it, we'll transform it using substitution into an integral involving trigonometric functions, and then into an integral of a rational function.

dx(x23)4x2=[x=2sintdx=2costdt]= =2costdt(4sin2t3)44sin2t=2costdt(14cos2t)2cost= dt14cos2t=dt141+cos2t2=dt12cos2t=

=[2t=zdz=2dt]=12dz1+2cosz=[dz=2dp1+p2cosz=1p21+p2]= =122dp(1+p2)(1+21p21+p2)=dp1+p2+2(1p2)=dp3p2= =dp(3p)(3+p).

Let's decompose the integrand into partial fractions:

13p2=A3p+B3+p=A(3+p)+B(3p)3p2 =p(AB)+3(A+B)(3p2 Отсюда, приравнивая коэффициенты при одинаковых степенях p находим A и B. {AB=03(A+B)=1{A=B2A=13{A=123B=123

Thus, dp3p2=(12313+p+12313p)dz= =123(ln|3+p|ln|3p|)+C=123ln|3+p3p|+C. From here, performing the reverse substitutions, we obtain:

dx(x23)4x2=123ln|3+p3p|+C=123ln|3+tgz23tgz2|+C= =123ln|3tgt3+tgt|+C=123ln|31x24x231x24+x2|+C= =123ln|34x2x34x2+x|+C.

Answer: 123ln|34x2x34x2+x|+C.

5. x21xdx.

Solution.

This is an integral of the second type. To solve it, we'll transform it using substitution into an integral involving hyperbolic functions, and then into an integral of a rational function.

x21dxx=[x=chtdx=shtdt]=sh2tdtcht=ch2t1chtdt= =(cht1cht)dt=sht1chtdt+C.

Let's compute the remaining integral:

1chtdt=[z=tht2cht=1+z21z2dt=2dz1z2]=2dz(1z2)1+z21z2= =2dz1+z2=2arctgz+C=2arctgtht2=2arctgcht1cht+1+C.

Thus,

x21dxx=ch2t12arctgcht1cht+1+C= =x212arctgx1x+1+C.

Answer: x212arctgx1x+1+C.

6. dx(x2+9)3.

Solution.

This is an integral of the second type. To solve it, we'll transform it using substitution into an integral involving trigonometric functions, and then into an integral of a rational function.

dx(x2+9)3=[x=3tgtdx=3cos2tdt]=3dtcos2t(9tg2t+9)3=19dtcos2t= =19dtcos2t(1cos2t)3dt=19costdt=19sint+C=19tgtcost+C= =19tgt1tg2t+1+C=19x31x29+1+C=x9x2+9+C.

Answer: x9x2+9+C.

Homework.

1. xdx2x33.

2. x+1x13dx(x1)3.

3. 1xx1x+1dx.

4. dx8xx2.

5. x21x2dx.

6. x22x+10dx.

Tags: Integration of irrational functions, calculus, integral, mathematical analysis