Integration by parts method.

If u(x) and v(x) are differentiable functions, then the following integration by parts formula holds: u(x)v(x),dx=u(x)v(x)v(x)u(x)dx,

Alternatively, in a concise notation: udv=uvvdu.

This formula is used in cases where the integrand f(x)dx can be expressed as u,dv such that v=,dv can be found and the resulting integral on the right-hand side v,du is simpler than the original u,dv.

Some types of functions that are integrated using the integration by parts method and recommended partitions:

Type I:

Pn(x)cosmxdx;

Pn(x)sinnxdx;

Pn(x)aαxdx,

where Pn(x) is a polynomial of degree n in x: u=Pn(x), and dv is everything else.

Type II:

Pn(x)lnmxdx;

Pn(x)arccosxdx;

Pn(x)arcsinxdx;

Pn(x)arctgxdx;

Pn(x)arcctgxdx,

where Pn(x) is a polynomial of degree n in x: dv=Pn(x)dx, and u is everything else.

Type III:

aαxcosmxdx;

aαxsinnxdx:

the partition is arbitrary.

It should be noted that for computing the integral, the integration by parts formula can be applied repeatedly.

Examples:

1. arccosx,dx.

Solution.

arccosxdx=[u=arccosxdu=11x2dxdv=dxv=x]= =arccosxxx(11x2)dx=xarccosx+xdx1x2.

Let's compute the integral obtained on the right-hand side:

xdx1x2=[1x2=tdt=2xdxxdx=dt2]= =dt2t=12t1/2dt=12t1/21/2+C=t+C=1x2+C.

Therefore,

arccosxdx=xarccosx+1x2+C.

Answer: xarccosx+1x2+C.

2. xlnxdx.

Solution.

xlnxdx=[u=lnxdu=1xdxdv=xdxv=x22]=lnxx22x221xdx= =x22lnx12xdx=x22lnxx24+C.

Answer: x24(2lnx1)+C.

3. x2sinxdx.

Solution.

x2sinxdx=[u=x2du=2xdxdv=sinxdxv=cosx]= =x2cosx+2cosxxdxdx=[u=xdu=dxdv=cosxdxv=sinx]= =x2cosx+2(xsinxsinxdx)=x2cosx+2xsinx+2cosx+C.

Answer: x2cosx+2xsinx+2cosx+C.

4.x3ex2dx.

Solution.

x3ex2dx=[u=x2du=2xdxdv=xex2dxv=xex2dx].

xex2dx=[t=x2dt=2xdx]=12etdt=12ex2+c. Therefore, x3ex2dx=[u=x2du=2xdxdv=xex2dxv=12ex2dx]= =12x2ex2(12ex2)2xdx=12x2ex2+xex2dx= =12x2ex212ex2+C.

Answer: 12ex2(x2+1)+C.

5. xsinxcos3xdx.

Solution.

xsinxcos3xdx=[u=xdu=dxdv=sinxcos3xdxv=sinxcos3xdx].

sinxcos3xdx=[t=cosxdt=sinxdx]=1t3dt=t3dt= =t22=12cos2x+c.

Therefore,

xsinxcos3xdx=[u=xdu=dxdv=sinxcos3xdxv=12cos2x]= =x12cos2x12cos2xdx=x2cos2x12tgx+C.

Answer: x2cos2x12tgx+C.

6.eaxcosbxdx.

Solution.

eaxcosbxdx=[u=cosbxdu=bsinbxdxdv=eaxdxv=1aeax]= =cosbx1aeax1aeax(bsinbx)dx= =cosbxaeax+baeaxsinbxdx=[u=sinbxdu=bcosbxdxdv=eaxdxv=1aeax]= =cosbxaeax+ba(sinbx1aeax1aeaxbcosbxdx)= =cosbxaeax+bsinbxa2eaxb2a2eaxcosbxdx.

Let eaxcosbx,dx=I. Then we'll rewrite the obtained equation as follows:

I=cosbxaeax+bsinbxa2eaxb2a2I. Let's solve this equation for I:

I+b2a2I=cosbxaeax+bsinbxa2eax

I(1+b2a2)=cosbxaeax+bsinbxa2eax

I=cosbxaeax+bsinbxa2eax1+b2a2=eaxa2(acosbx+bsinbx)a2+b2a2= =eax(acosbx+bsinbx)a2+b2.

Answer: eax(acosbx+bsinbx)a2+b2+C.

7.cos(lnx)dx.

Solution.

cos(lnx)dx=[u=cos(lnx)du=1xsin(lnx)dxdv=dxv=x]= =cos(lnx)xx(1xsin(lnx))dx=xcos(lnx)+sin(lnx)dx.

sin(lnx)dx=[u=sin(lnx)du=1xcos(lnx)dxdv=dxv=x]= =sin(lnx)xx(1xcos(lnx))dx=xsin(lnx)cos(lnx)dx.

Thus, cos(lnx)dx=xcos(lnx)+xsin(lnx)cos(lnx)dx.

Let cos(lnx),dx=I. Then we'll write and solve the equation:

I=xcos(lnx)+xsin(lnx)I 2I=xcos(lnx)+xsin(lnx) I=12(xcos(lnx)+xsin(lnx).

Answer: 12(xcos(lnx)+xsin(lnx))+C.

Homework.

1. xcosxdx.

2. lnxx3dx.

3. x2exdx.

4. ln2xx2dx.

5. xarctgxdx.

6. ln(x+1+x2)dx.

7. x3lnxdx.

8. (x22x+3)cosxdx.

Tags: Integration by parts method, calculus, integral, mathematical analysis