Higher-order derivatives and differentials.

The second-order partial derivatives of the function u=f(x1,x2,...,xn) are the partial derivatives of its first-order partial derivatives. The second-order derivatives are denoted as follows: xk(uxk)=2uxk2=fxkxk(x1,x2,...,xk,...,xn). xl(uxk)=2uxkxl=fxkxl(x1,x2,...,xk,...,xl,...,xn). and so on.

Similarly, partial derivatives of order higher than the second are defined and denoted.

The second-order differential d2f of the function u=f(x1,x2,...,xn) is called the differential of its first-order differential, considered as a function of the variables x1,x2,...,xn with fixed values of dx1,dx2,...,dxn:d2u=d(du).

Similarly, the third-order differential is defined as:d3u=d(d2u).

In general, dmu=d(dm1u).

The m-th order differential of the function u=f(x1,x2,...,xn), where x1,x2,..,xn are independent variables, is expressed by the symbolic formula dmu=(x1dx1+x2dx2+...+xndxn)mu, which is formally expanded according to the binomial theorem.

For example, in the case of the function z=f(x,y) of two independent variables, the formulas for the second and third-order differentials are valid d2z=2zx2dx2+22zxydxdy+2zy2dy2,

d3z=3zx3dx3+33zx2ydx2dy++33zxy2dxdy2+3zy3dy3.

Examples.

Find the first and second-order differentials of the following functions: (x,y,z are independent variables):

1. z=x3+3x2yy3.

Solution.

dz=zxdx+zydy.

zx=(x3+3x2yy3)x=3x2+6xy;

zy=(x3+3x2yy3)y=3x23y2.

Thus

dz=(3x2+6xy)dx+(3x23y2)dy.

Differentiate a second time, considering that dx and dy are independent of x and y (i.e., treating dx and dy as constants).: d2z=d((3x2+6xy)dx+(3x23y2)dy)=d(3x2+6xy)dx+d(3x23y2)dy= =(6xdx+6xdy+6ydx)dx+(6xdx6ydy)dy=6((x+y)dx2+2xdxdyydy2).Answer: dz=(3x2+6xy)dx+(3x23y2)dy; d2z=6((x+y)dx2+2xdxdyydy2).

2.u=xy+yz+zx.

Solution.

du=d(xy+yz+zx)=xdy+ydx+ydz+zdy+zdx+xdz= =(y+z)dx+(x+z)dy+(x+y)dz.

Differentiate a second time, taking into account that dx,,,dy, and dz do not depend on x,,,y, and z (i.e., treating dx,,dy, and dz as constants):d2u=d((y+z)dx+(x+z)dy+(x+y)dz)= =(dy+dz)dx+(dx+dz)dy+(dx+dy)dz=2(dxdy+dxdz+dydz).

Answer: du=(y+z)dx+(x+z)dy+(x+y)dz; d2u=2(dxdy+dxdz+dydz).

3. Find d3z if z=eysinx.

Solution.

dz=d(eysinx)=eycosxdx+sinxeydy. Differentiate again, taking into account that dx and dy do not depend on x and y (i.e., treating dx and dy as constants).: d2z=d(eycosxdx+sinxeydy)= =sinxeydxdx+cosxeydydx+eycosxdxdy+sinxeydydy= =sinxeydx2+2eycosxdxdy+sinxeydy2.

d3z=d(sinxeydx2+2eycosxdxdy+sinxeydy2)= =(cosxeydx22eysinxdxdy+cosxeydy2)dx+ +(sinxeydx2+2eycosxdxdy+sinxeydy2)dy= =cosxeydx3+3eysinxdx2dy+3cosxyydxdy2+sinxeydy3.

Answer: d3z=cosxeydx33eysinxdx2dy+3cosxyydxdy2+sinxeydy3.

4. Find d6u, if u=ln(x+y+z).

Solution.

We will use the formula

dmu=(x1dx1+x2dx2+...+xndxn)mu,

ux=uy=uz=1x+y+z;

2ux2=2uy2=2uz2=2uxy=2uyx=2uxz=2uzx=2uyz=2uzy= =1(x+y+z)2;

...

6ux6=6uy6=6uz6=6ux5y=6ux4y2=...6uxy5=6ux5z=...= =6uxz5=6uy5z=...=6uyz5=(1)55!1(x+y+z)6=5!(x+y+z)6.

From here we have d6(ln(x+y+z))=(xdx+ydy+zdz)6(ln(x+y+z))= =5!(x+y+z)6(dx+dy+dz)6.

Answer: d6u=5!(x+y+z)6(dx+dy+dz)6.

Homework.

Find the first and second-order differentials of the following functions: (x,y,z are independent variables):

1. z=yxxy.

2. z=x2+2xy.

3. z=(x+y)exy.

4. z=xlnyx.

5 Find d3u, if u=x3+y3+z33xyz..

6. Find dmu, if u=eax+by+cz.

Tags: Higher-order derivatives, calculus, derivative table, detivative, differentials, mathematical analysis