Gaussian elimination method for solving systems of linear equations.

Let's consider a system of m linear equations with n unknowns of the general form.

{a11x1+a12x2+...+a1nxn=b1a21x1+a22x2+...+a2nxn=b2...............................am1x1+am2x2+...+amnxn=bm(1)

Forward elimination of the Gauss method:

Using elementary row operations and column permutations, the augmented matrix of system (1) can be transformed into the form:

A=(a11a12...a1ra1,r+1...a1n0a22...a2ra2,r+1...a2n.....................00...arrar,r+1...arn0000000.....................00...00...0);(2).

Matrix (2) is the augmented matrix of the system.

{a11x1+a12x2+...+a1rxr+a1,r+1xr+1+...+a1nxn=b1a22x2+...+a2rxr+a2,r+1xr+1+...+a2nxn=b2..............................arrxr+ar,r+1xr+1+...+arnxn=br0=br+10=br+2........0=bm(3)

which is equivalent to the original system.

Backward substitution of the Gauss method:

If at least one of the numbers br+1,...,bm is nonzero, then systems (3) and, consequently, the original system (1) are inconsistent. However, if br+1=...=bm=0, then the system is consistent, and from equations (3), we can express the basic unknowns in terms of the free variables xr+1,...,xn.

Examples:

Using the Gauss method, investigate the consistency and find the general solution of the following systems:

1.

{x1+2x2+3x3+4x4=07x1+14x2+20x3+27x4=05x1+10x2+16x3+19x4=23x1+5x2+6x3+13x4=5

Solution.

Let's write down the augmented matrix:

(1234|07142027|05101619|235613|5).

By performing elementary row operations on the augmented matrix, we get:

(1234|07142027|05101619|235613|5)(I×3) (36912|07142027|05101619|235613|5)(IVI) (36912|07142027|05101619|20131|5)(I×53) (5101520|07142027|05101619|20131|5)(IIII;I:5) (1234|07142027|00011|20131|5)(I×7) (7142128|07142027|00011|20131|5)(III;I:7)

(1234|00011|00011|20131|5)(III+II;II:1) (1234|00011|00002|20131|5) (1234|00131|50011|00002|2).

The system is consistent.

Back substitution step of the Gauss method:

2x4=2x4=1;

x3+x4=0x3=x4=1;

x23x3+x4=5x2=3x3+x45=3+15=1

x1+2x2+3x3+4x4=0x1=2x23x34x4=2+34=1.

Answer:x1=1;x2=1;x3=1;x4=1.

2.

{x1+x2=1x1+x2+x3=4x2+x3+x4=3x3+x4+x5=2x4+x5=1

Solution.

Let's write down the augmented matrix:

(11000|111100|401110|300111|200011|1).

By performing elementary row operations on the augmented matrix, we get:

(11000|111100|401110|300111|200011|1)(III)

(11000|100100|301110|300111|200011|1)(IVIIV)

(11000|100100|301110|300000|000011|1)

(11000|101110|300100|300011|100000|0).

The system is consistent.

Backward substitution using the Gauss method:

x5=c;

x4+x5=1x4=1x5=1c;

x3=3

x2+x3+x4=3x2=3x3x4=33+1+c=5+c.

x1+x2=1x1=1x2=1+5c=6c

Answer: x1=6c;x2=5+c;x3=3;x4=1c;x5=c.

Jordan-Gauss method for solving systems of linear equations.

Using elementary row operations and column permutations, the augmented matrix of the system (1) can be transformed into the form:

A=(10...0a1r+1...a1n01...0a2,r+1...a2n.....................00...1ar,r+1...arn0000000.....................00...00...0);(4).

The matrix (4) is the augmented matrix of the system

{x1+a1,r+1xr+1+...+a1nxn=b1x2+a2,r+1xr+1+...+a2nxn=b2..........................xr+ar,r+1xr+1+...+arnxn=br0=br+10=br+2........0=bm(5) which is equivalent to the original system.

If at least one of the numbers br+1,...,bm is nonzero, then systems (5) and, consequently, the original system (1) are inconsistent. However, if br+1=...=bm=0, then the system is consistent, and formulas (5) provide an explicit expression for the basic variables in terms of the free variables xr+1,...,xn.

Examples:

Using the Jordan-Gauss method, investigate the consistency and find the general solution of the following systems:

3.

{x1+2x2+3x3+4x4=07x1+14x2+20x3+27x4=05x1+10x2+16x3+19x4=23x1+5x2+6x3+13x4=5

Solution.

Let's write down the augmented matrix:

(1234|07142027|05101619|235613|5).

Performing elementary row operations on the augmented matrix, we get:

(1234|07142027|05101619|235613|5)(I×3) (36912|07142027|05101619|235613|5)(IVI) (36912|07142027|05101619|20131|5)(I×53) (5101520|07142027|05101619|20131|5)(IIII;I:5) (1234|07142027|00011|20131|5)(I×7) (7142128|07142027|00011|20131|5)(III;I:7) (1234|00011|00011|20131|5)(III+II;II:1) (1234|00011|00002|20131|5) (1234|00131|50011|00002|2)(I+II×2) (1036|100131|50011|00002|2)(I+III×3;II+III×3;IV:2) (1009|100104|50011|00001|1)(IIV×9;IIIV×4;IIIIV) (1000|10100|10010|10001|1)(II:1) (1000|10100|10010|10001|1).

From here, we immediately get the answer.

Answer:x1=1;x2=1;x3=1;x4=1.

4.

{x1+x2=1x1+x2+x3=4x2+x3+x4=3x3+x4+x5=2x4+x5=1

Solution.

Let's write down the augmented matrix:

(11000|111100|401110|300111|200011|1).

Performing elementary row operations on the augmented matrix, we obtain:

(11000|111100|401110|300111|200011|1)(III) (11000|100100|301110|300111|200011|1)(IVIIV) (11000|100100|301110|300000|000011|1)(11000|101110|300100|300011|100000|0)(III+III;IIIIIIV) (10010|701001|500100|300011|100000|0)(I+IV) (10001|601001|500100|300011|100000|0). Considering x1,x2,x3,x4

as basic variables and x5 as a free variable, we get

x5=c;

x4+x5=1x4=1x5=1c;

x3=3

x2x5=5x2=5+x5=5+c.

x1+x5=6x1=6x5=6c.

Answer: x1=6c;x2=5+c;x3=3;x4=1c;x5=c.

Homework.

1. Using the Gauss method and the Jordan-Gauss method, investigate the compatibility and find the general solution of the following system: {x12x2+3x3=62x1+3x24x3=183x12x2+5x3=6

2. Using the Gauss method, investigate the compatibility and find the general solution of the following system

{105x1175x2315x3+245x4=8490x1150x2270x3+210x4=7275x1125x2225x3+175x4=59

Answer: The system is inconsistent.

3. Investigate the compatibility using the Jordan-Gauss method and find the general solution of the following system.

{8x1+12x2=2014x1+21x2=359x3+11x4=016x3+20x4=010x3+12x6=2215x5+18x6=33

Answer: x1=5232c1;x2=c1;x3=0;x4=0;x5=11565c2;x6=c2.

Tags: Gaussian method, Jordan-Gauss method, linear algebra, linear equations, matrix