Differentiation of complex and implicitly defined functions.

Complex functions of one and several independent variables.

If u=f(x1,x2,..,xn) is a differentiable function of variables x1,x2,...,xn, which themselves are differentiable functions of the independent variable t:

x1=φ1(t),x2=φ2(t),,xn=φn(t), The derivative of the composite function u=f(φ1(t),φ2(t),...,φn(t)) is calculated by the formula: dudt=ux1.dx1dt+ux2.dx2dt+...+uxn.dxndt. In particular, if t coincides, for example, with the variable x1, then the "total" derivative of the function u with respect to x1 is equal to:

dudx1=ux1+ux2dx2dx1+...+uxndxndx1. Let u=f(x1,x2,..,xn), where x1=φ1(t1,t2,...,tm),x2=φ2(t1,t2,...,tm),,xn=φn(t1,t2,...,tm), (t1,t2,...,tm) - independent variables. The partial derivatives of the function u with respect to t1,t2,...,tm are expressed as follows:ut1=ux1x1t1+ux2x2t1+...+uxnxnt1, ut2=ux1x1t2+ux2x2t2+...+uxnxnt2, utm=ux1x1tm+ux2x2tm+...+uxnxntm.In this case, the expression for the first-order differential remains unchanged. du=ux1dx1+ux2dx2+...+uxndxn. The expressions for higher-order differentials of a composite function, generally speaking, differ from the expression of the form dmu=(x1dx1+x2dx2+...+xndxn)mu. For example, the second-order differential is expressed by the formula

d2u=(x1dx1+x2dx2+...+xndxn)2u+ +ux1d2x1+ux1d2x2+...+uxnd2xn.

Implicit functions of one and several independent variables.

Let the equation f(x,y)=0, where f is a differentiable function of variables x and y, define y as a function of x. The first derivative of this implicit function y=y(x) at the point x0 is expressed by the formula:dydx|x0=fx(x0,y0)fy(x0,y0)(1) provided that fy(x0,y0)0, where y0=y(x0), f(x0,y0)=0.

Higher-order derivatives are computed by successive differentiation of formula (1).

Examples:

1. Find dzdt if z=e2x3y, where x=tant, y=t2t.

Solution.

We will use the formula

dudt=ux1.dx1dt+ux2.dx2dt+...+uxn.dxndt.

Let's find the partial derivatives:

zx=e2x3y(2x3y)x=2e2x3y;

zy=e2x3y(2x3y)y=3e2x3y;

dxdt=1cos2t;

dydt=2t1.

Hence,

dzdt=2e2x3y1cos2t3e2x3y(2t1)=2e2tgt3(t22)cos2t3e(2tgt3t22)(2t1).

Answer: 2e2tgt3(t22)cos2t3e3(t22)(2t1).

2. Find dzdt if z=xy, where x=lnt, y=sint.

Solution.

We will use the formula dudt=ux1.dx1dt+ux2.dx2dt+...+uxn.dxndt.

Let's find the partial derivatives:

zx=(xy)x=yxy1;

zy=(xy)y=xylnx;

dxdt=(lnt)=1t;

dydt=(sint)=cost.

Hence

dzdt=yxy11t+xylnxcost=sintlntsint1t(lnt)sintcostlnlnt.

Answer: dzdt=sintlntsint1t(lnt)sintcostlnlnt.

3. Find zx and dzdx, if z=ln(ex+ey), where y=13x3+x.

Solution.

zx=(ln(ex+ey))x=1ex+ey(ex+ey)x=exex+ey.

To find dzdx, we will use the formula:dudx1=ux1+ux2dx2dx1+...+uxndxndx1.

zy=(ln(ex+ey))y=1ex+ey(ex+ey)y=eyex+ey;

dydx=(13x3+x)=3x23+1=x2+1.

Hence

dzdz=zx+zydydx=exex+ey+eyex+ey(x2+1).

Answer: exex+ey; ex+ey(x2+1)ex+ey.

4. Find zx and zy, if z=f(u,v), where u=ln(x2y2),v=xy2.

Solution.

We will use the formulaszx=zuux+zvvx, zy=zuuy+zvvy,

Let's find the partial derivatives:

ux=(ln(x2y2))x=1x2y2(x2y2)x=2xx2y2;

uy=(ln(x2y2))y=1x2y2(x2y2)y=2yx2y2;

vx=(xy2)x=y2;

vy=(xy2)y=2xy;

Hence

zx=zu2xx2y2+zvy2,

zy=zu2yx2y2+2zvxy.

Answer: zx=zu2xx2y2+zvy2, zy=zu2yx2y2+2zvxy.

5. Find dz, if z=f(u,v), where u=sinxy,v=x/y.

Solution.

We will use the formula dz=zudu+zydy.

Let's find the partial derivatives:

ux=(sinxy)x=1ycosxy;

uy=(sinxy)y=xy2cosxy;

vx=(x/y)x=12x/y(xy)x=12yx/y;

vy=(x/y)y=12x/y(xy)y=x2y2x/y.

Hence

du=1ycosxydxxy2cosxydy.

dv=12yx/ydxx2y2x/ydy.

Thus,

dz=fu(1ycosxydxxy2cosxydy)+fv(12yx/ydxx2y2x/ydy)= =1y2(yfucosxy+yfv12x/y)dx(xcosxy+x2x/y)dy.

Answer: 1y2(yfucosxy+yfv12x/y)dx(xcosxy+x2x/y)dy.

6. Find d2u, if u=f(ax,by,cz).

Solution.

Let's denote x1=ax, x2=by, x3=cz. We will use the formula

d2u=(x1dx1+x2dx2+x3dx3)2u+ux1d2x1+ux1d2x2+ux3d2x3.

Next, we find,

dx1=d(ax)=adx;

dx2=d(by)=bdy;

dx3=d(cz)=cdz;

d2x1=(ax)xdx2=0;

d2x2=(by)ydy2=0;

d2x3=(cz)zdz2=0.

Thus,

d2u=(x1dx1+x2dx2+x3dx3)2u+ux1d2x1+ux1d2x2+ux3d2x3=

=2ux12dx12+2ux22dx22+2ux32dx32+22ux1x2dx1dx2+22ux1x3dx1dx3+22ux2x3dx2dx3= =2ux12a2dx2+2ux22b2dy2+2ux32c2dz2+22ux1x2abdxdy+22ux1x3acdxdz+22ux2x3bcdydz.

Answer: 2ux12a2dx2+2ux22b2dy2+2ux32c2dz2+22ux1x2abdxdy+22ux1x3acdxdz+22ux2x3bcdydz.

7. Find dydx, if x2e2yy2e2x=0.

Solution.

We find the derivative dydx using the formula: dydx=fx(x,y)fy(x,y). Here f(x,y)=x2e2yy2e2x.

Let's find the partial derivatives:

fx(x,y)=(x2e2yy2e2x)x=2xe2y2y2e2x;

fy(x,y)=(x2e2yy2e2x)y=2x2e2y2ye2x.

From here, we find

dydx=fx(x,y)fy(x,y)=2xe2y2y2e2x2x2e2y2ye2x=y2e2xxe2yx2e2yye2x.

Answer: y2e2xxe2yx2e2yye2x.

8. Find dydx, d2ydx2, if xy+arctgy=0.

Solution.

We find the derivative dydx using the formuladydx=fx(x,y)fy(x,y). Here f(x,y)=xy+arctgy.

Let's find the partial derivatives:

fx(x,y)=(xy+arctgy)x=1;

fy(x,y)=(xy+arctgy)y=1+11+y2.

From here, we find

dydx=fx(x,y)fy(x,y)=11+11+y2=1+y2y2.

We find the second-order derivative d2ydx2 by differentiating the expression dydx=1+y2y2 with respect to the variable x.

d2ydx2=(1+y2)xy2(y2)x(1+y2)y4=2yyxy22yyx(1+y2)y4=2yxy3= =21+y2y2y3=21+y2y5

Answer: dydx=1+y2y2; d2ydx2=21+y2y5.

9. Find 2zx2, 2zxy, 2zy2, if x+y+z=ez.

Solution.

We find the derivatives dzdx and dzdy using the formulasdzdx=fx(x,y,z)fz(x,y,z); dzdy=fy(x,y,z)fz(x,y,z); Here f(x,y,z)=x+y+zez.

Let's find the partial derivatives:

fx(x,y,z)=(x+y+zez)x=1;

fy(x,y,z)=(x+y+zez)y=1;

fz(x,y,z)=(x+y+zez)z=1ez.

From here, we find

dzdx=fx(x,y,z)fz(x,y,z)=11ez.

dzdy=fx(x,y,z)fz(x,y,z)=11ez.

Second-order derivatives are found by differentiating the found first-order derivatives with respect to the corresponding variables.

d2zdx2=(1ez)x(1ez)2=ezzx(1ez)2=ez11ez(1ez)2=ez(1ez)3. d2zdxdy=(1ez)y(1ez)2=ezzy(1ez)2=ez11ez(1ez)2=ez(1ez)3. d2zdy2=(1ez)y(1ez)2=ezzy(1ez)2=ez11ez(1ez)2=ez(1ez)3.

Answer: d2zdx2=d2zdxdy=d2zdy2=ez(1ez)3.

Tags: calculus, complex functions, derivative, functions of several independent variables, mathematical analysis