Cramer's Rule.

Let's consider a system of n linear equations with n unknowns of the general form.

{a11x1+a12x2+...+a1nxn=b1a21x1+a22x2+...+a2nxn=b2..............................an1x1+an2x2+...+annxn=bn,(1) or, in matrix form, AX=B, where

A=(a11a12...a1na21a22...a2n............an1an2...ann); X=(x1x2...xn); B=(b1b2...bn).

Cramer's Rule: If detA=Δ0, meaning matrix A has an inverse, then system (1) has a unique solution given by xi=ΔiΔ, i=1,2,,n, where Δi is the determinant obtained from Δ by replacing the i-th column with the column of constants.

Examples:

Solve the following systems using Cramer's Rule:

1. {3x5y=132x+7y=81 Solution.

The matrix A=(3527) is non-singular because

detA=|3527|=21+10=310. Therefore, the system has a unique solution.

Δ=detA=21;

Δ1=|135817|=91+405=496;

Δ2=|313281|=24326=217.

From here, we obtain x=Δ1Δ=49631=16; y=Δ2Δ=21731=7.

Answer: x=16; y=7.

2. {7x+2y+3z=155x3y+2z=1510x11y+5z=36

Solution.

The matrix A=(72353210115) is non-singular because

detA=|72353210115|=105165+40+90+15450=360. Thus, the system has a unique solution.

Δ=detA=36;

Δ1=|1523153236115|=225495+144+324+330150=72.

Δ2=|7153515210365|=525+540+300450504375=360.

Δ3=|72155315101136|=756825+300+450+1155360=36.

Hence, we obtain: x=Δ1Δ=7236=2; y=Δ2Δ=3636=1; z=Δ3Δ=3636=1.

Answer:x=2; y=1; z=1.

3. {x+y2z=62x+3y7z=165x+2y+z=16

Solution.

The matrix A=(112237521) is non-degenerate, since

detA=|112237521|=3835+30+142=20. Therefore, the system has a unique solution.

Δ=detA=2;

Δ1=|61216371621|=1864112+96+8416=6;

Δ2=|l6221675161|=1664210+160+11212=2;

Δ3=|11623165216|=48+24+80903232=2;

Hence, we obtain: x=Δ1Δ=62=3; y=Δ2Δ=22=1; z=Δ3Δ=22=1.

Answer: x=3; y=1; z=1.

Homework:

Solve the following systems of equations using Cramer's rule.

1. {3x4y=63x+4y=18.

Answer: x=2;y=3.

2. {2x+y=5x+3z=165yz=10.

Answer: x=1;y=3;z=5.

3. {4x1+4x2+5x3+5x4=02x1+3x3x4=10x1+x25x3=103x2+2x3=1.

Answer: x1=1;x2=1;x3=2;x4=2.

Tags: Cramer's Rule, linear algebra, linear equations, matrix