Calculation of higher-order differentials.

Let's consider the differential dy(x,dx)=f(x)dx as a function of x at a fixed dx. Assuming that the function y=f(x) is twice differentiable at the point x, let's find the differential of dy(x,dx):

d(dy(x,dx))=f(x)dxdx

The value of the obtained expression is called the second differential or the second-order differential of the function y=f(x) and is denoted by the symbol d2y(x,dx).

Thus, d2y=f(x)dx2

Similarly,

d3y=d(d2y)=f(x)dx3

.................

dny=d(dn1y)=f(n)(x)dxn

Examples:

Find the second-order differentials of the specified functions:

1. y=asin(bx+c).

Solution.

y(x)=(asin(bx+c))=acos(bx+c)(bx+c)=abcos(bx+c);

y(x)=(abcos(bx+c))=absin(bx+c)(bx+c)=ab2sin(bx+c).

To compute the second-order differential, we use the formula

d2y=f(x)dx2.

Thus, we obtain

d2y=ab2sin(bx+c)dx2.

Answer: d2y=ab2sin(bx+c)dx2.

2. y=sinxx.

Solution.

y=(sinxx)=(sinx)xsinxxx2=xcosxsinxx2.

y=(xcosxsinxx2)=(xcosxsinx)x2(xcosxsinx)(x2)x4=

=(xcosx+x(cosx)(sinx))x2(xcosxsinx)2xx4= =(cosxxsinxcosx)x22x2cosx+2xsinxx4= =x3sinx2x2cosx+2xsinxx4=x2sinx2xcosx+2sinxx3.

To compute the second-order differential, the formula is known as

d2y=f(x)dx2.

Thus, we obtain

d2y=2xcosx+(2x2)sinxx3dx2.

Answer: d2y=2xcosx+(2x2)sinxx3dx2.

3. y=1x23x+2

Solution.

Let's find y:

y=(1x23x+2)=((x23x+2)1)= =(x23x+2)2(x23x+2)=(x23x+2)2(2x3).

y=((x23x+2)2(2x3))= =((x23x+2)2)(2x3)(x23x+2)2(2x3)=

=(2)(x23x+2)3(x23x+2)(2x3)(x23x+2)22= =2(x23x+2)3(2x3)22(x23x+2)2= =2(2x3)2(x23x+2)321(x23x+2)2= =24x212x+9x2+3x2(x23x+2)3=23x29x+7(x23x+2)3.

We find the second-order differential using the formula

d2y=f(x)dx2.

Thus, we obtain

d2y=23x29x+7(x23x+2)3dx2.

Answer: d2y=23x29x+7(x23x+2)3dx2.

Find the second-order differentials of the following functions implicitly defined by y=y(x):

4. xy+y2=1.

Solution.

Let's find dy:

d(xy+y2)=d(1)

ydx+xdy+d(y2)=0

ydx+xdy+2ydy=0dy=yx+2ydx.

Next, let's find d2y:

d(dy)=d(yx+2y)dx=dy(x+2y)y(d(x+2y))(x+2y)2dx=

=(x+2y)dyydx2ydy(x+2y)2dx= =(x+2y)y(x+2y)dxydx2yyx+2ydx(x+2y)2dx=2y2y2x+2y(x+2y)2dx2= =2y(x+2y)2y2(x+2y)3dx2=2xy+2y2(x+2y)3dx2=2xy+y2(x+2y)3dx2.

Substituting the given data from the condition xy+y2=1, we finally obtain

d2y=2(x+2y)3dx2.

Answer: d2y=2(x+2y)3dx2.

5. x=yasiny.

Solution.

Let's find y(x) as the derivative of the function defined implicitly:

F(x,y)=xy+asiny=0;

F(x,y)=(xy+asiny)=1y+acosyy=0y=11acosy;

F(x,y)=(1y+aycosy)=y+aycosyaysinyy= =y(acosy1)a(11acosy)2siny=0 y=asiny(11acosy)2acosy1=asiny(1acosy)3.

Thus,

d2y=y(x)dx2=asiny(1acosy)3dx2.

Answer: d2y=asiny(1acosy)3dx2.

Homework:

Find the second-order differentials of the specified functions:

1. y=3x2.

Answer: 3x2ln9(2x2ln31)dx2

2. y=ax2+bx+c.

Answer: 2adx2

3. y=1x2arcsinx.

Answer: 1x2x+arcsinx(1x2)3/2dx2

4. y=arcsin(asinx).

Answer: a(1+a2)sinx(1+a2sin2x)3/2dx2

Find the second-order differentials of the following implicitly defined functions y=y(x):

5. (xa)2+(yb)2=R2.

Answer: R2(yb)3dx2

6. x3+y3=y.

Answer: 6x(1+3y2)(13y2)3dx2.

Tags: calculus, differential, higher-order differentials, mathematical analysis