Calculation of higher-order derivatives.

The second-order derivative of a function y=f(x) is called the derivative of its first derivative, i.e., y(x)=(y(x)).

The n-th order derivative (or n-th derivative) is defined as the derivative of the (n1)-th order derivative, i.e., y(n)(x)=(y(n1)(x)),n=2,3,... For the n-th order derivative, the notation dnydxn is used.

Let u(x) and v(x) have derivatives up to the n-th order inclusive. Then, for the n-th order derivative of their product u(x)v(x), the Leibniz formula applies:a (uv)(n)=unv+nu(n1)v+n(n1)12u(n1)v+...+uv(n)=k=0nCnku(nk)v(k), where u(0)=u,,,v(0)=v and Cnk=n(n1)...(nk+1)12...k=k!(nk)! are binomial coefficients (by definition, 0!=1).

Examples.

Find the second-order derivatives of the following functions:

1. y=cos2x.

Solution.

y=(cos2x)=2cosx(cosx)=2cosxsinx=sin2x;

y=(sin2x)=cos2x(2x)=2cos2x.

Answer: 2cos2x.

2. y=ex2.

Solution.

y=(ex2)=ex2(x2)=ex2(2x)=2xex2.

y=(2xex2)=(2x)ex22x(ex2)=2ex22xex2(2x)= =2ex2+4x2ex2.

Answer: y=2ex2+4x2ex2.

3. Find y(2), если y=ln(x1).

Solution.

y=(ln(x1))=1x1(x1)=1x1;

y=(1x1)=((x1)1)=1(x1)2(x1)=(x1)2;

y=((x1)2)=(2)(x1)3=21(x1)3;

y(2)=21(21)3=2.

Answer: 2.

Let u(x) and v(x) be twice differentiable functions. Find y,,,y if:

4. y=u2+v2.

Solution.

y=(u2+v2)=((u2+v2)1/2)=12(u2+v2)1/2(u2+v2)= =12(u2+v2)1/2(2uu+2vv)=uu+vvu2+v2;

y=((u2+v2)1/2(uu+vv))= =(12)(u2+v2)1/21(u2+v2)(uu+vv)+ +(u2+v2)1/2(uu+uu+vv+vv)= =12(u2+v2)3/2(uu+vv)(2uu+2vv)+ +(u2+v2)1/2(u2+uu+v2+vv)= (u2+v2)3/2(uu+vv)2+(u2+v2)1/2(u2+uu+v2+vv)= =(uu+vv)+(u2+v2)(u2+uu+v2+vv)(u2+v2)3/2

Answer: (uu+vv)+(u2+v2)(u2+uu+v2+vv)(u2+v2)3/2.

Find the formula for the n-th derivative of the given functions:

5. y=xm,mN.

Solution.

y=(xm)=mxm1;

y=(mxm1)=m(m1)xm2;

y=(m(m1)xm2)=m(m1)(m2)xm3;

...

y(n)=m(m1)(m2)...(mn+1)xmn=m!(mn+1)!xmn,nm

y(n)=m(m1)(m2)...(mm)...(mn+1)xmn=0,n>m.

Answer: y(n)=m!(mn+1)!xmn,nm; y(n)=0,n>m.

6. y=sinx.

Solution.

y=(sinx)=cosx=sin(x+π2);

y=(cosx)=sinx=sin(x+π);

y=(sinx)=cosx=sin(x+3π2);

y(4)=(cosx)=sinx=sin(x+2π)=sin(x+4π2);

...

y(n)=sin(x+π2n).

Answer: y(n)=sin(x+π2n).

7. y=1+x1x.

Solution.

y=(1+x1x)=(1+x)(1x)(1x)(1+x)(1x)2= =1x+1+x(1x)2=2(1x)2.

y=(2(1x)2)=2((1x)2))=2(2)(1x)21(1x)= =22(1x)3.

y=(22(1x)3)=22(3)(1x)4(1)=223(1x)4.

...

y(n)=2n!(1x)n1.

Answer: y(n)=2n!(1x)n1.

8. By decomposing into a linear combination of simpler functions, find the derivative y(50) of the function y=1x23x+2.

Solution.

Let's decompose the fraction 1x23x+2 into elementary fractions:

x23x+2=0

D=98=1

x1=3+12=2; x2=312=1.

Thus, x23x+2=(x1)(x2).

Hence, 1x23x+2=Ax1+Bx2=Ax2A+BxB(x1)(x2).

Therefore, 1=Ax2A+BxB.

We equate the coefficients of like terms:

{1=2AB0=A+B{1=2BBB=A{B=1A=1

y=(1x23x+2)=(1x1+1x2)= =((x1)1)+((x2)1)=(x1)2(x2)2.

y=(1x23x+2)=(1x1+1x2)= =((x1)1)+((x2)1)=((x1)2(x2)2)= =2(x1)3+2(x2)3.

y=(1x23x+2)=(1x1+1x2)= =((x1)1)+((x2)1)=(2(x1)3+2(x2)3)= =23(x1)423(x2)4.

......

y50=(1x23x+2)(50)=(1x1+1x2)(50)= =((x1)1)(50)+((x2)1)(50)=(2(x1)3+2(x2)3)= =50!(x1)51+50!(x2)51=50!(1(x1)51+1(x2)51).

Answer: y(50)=50!(1(x1)51+1(x2)51).

(The answer did not match the one in the book -- their solution is y50=(x1)50(x2)50(x23x+2)51.)

Applying the Leibniz formula, find the specified derivatives of the given functions:

9. y=(x2+x+1)sinx, find y(15).

Solution.

Using the Leibniz formula, we get:

y(15)=((x2+x+1)sinx)(15)=(sinx)(15)(x2+x+1)+ +15(sinx)(14)(x2+x+1)+151412(sinx)(13)(x2+x+1)+ +1514131cot23(sinx)(12)(x2+x+1)+...+sinx(x2+x+1)(15)

(x2+x+1)=2x+1;

(x2+x+1)=(2x+1)=2;

(x2+x+1)=2=0;

...

(x2+x+1)(15)=0.

From problem 5.201, we write down the derivatives of the sine function:sin(15)x=sin(x+15π/2)=sin(x+3π/2+6π)=sin(x+3π/2)=cosx;

sin(14)x=sin(x+14π/2)=sin(x+π+6π)=sin(x+π)=sinx;

sin(13)x=sin(x+13π/2)=sin(x+π/2+6π)=sin(x+π/2)=cosx.

Thus, we find:

y(15)=cosx(x2+x+1)+15(sinx)(2x+1)+151422cosx= =cosx(x2x1+209)15sinx(2x+1)

Answer: y(15)=cosx(x2x1+209)15sinx(2x+1)

10. Find the second-order derivative of the function defined implicitly by y=1+xey.

Solution.

Let's introduce the function F(x,y):

F(x,y)=y1xey=0.

Let's find the first derivative:

Fx(x,y)=yxeyx(ey)x=yeyxeyy=0. ОFrom here, y(1xey)=eyy=ey1xey.

Next, we find the second derivative and substitute the found function instead of y:

Fx(x,y)=(yeyxeyy)=yeyyxeyyx(ey)yxeyy=

=yeyyeyyxeyyyxeyy= =y2eyey1xeyxey(ey1xey)2xeyy=0.

Now, let's find y:

yxeyy=2eyey1xey+xey(ey1xey)2=0 y=2e2y1xey+xe3y(1xey)21xey=2e2y(1xey)+xe3y(1xey)3= =2e2y2xe3y+xe3y(1xey)3=2e2yxe3y(1xey)3=e2y2xey(1xey)3.

Answer: y=e2y2xey(1xey)3.

Tags: calculus, derivative, higher-order derivatives, mathematical analysis