Approximate calculations using differentials

The expression for the differential is given by dy(x0,dx)=f(x0)dx, where dx=Δx.

If f(x0)0, then as Δx0, the increment of the function and its differential dy at a fixed point are equivalent infinitesimals, allowing us to write the approximate equality:

Δydy when |Δx|1.

Examples.

1. Compute approximately:

a) arcsin0.05;

Solution.

We will use the formula Δydy=y(x0)dx.

y(x)=arcsinx

x0=0, Δx=dx=0.05,

Δy=y(x)y(x0)arcsin0.05y(0)0.05;

y(x)=arcsinxy(x)=11x2. Thus, y(x0)=1.

Substituting all the obtained values into the formula Δydy=y(x0)dx, we get arcsin0.0510.05=0.05;

Answer: 0.05.

в) ln1,2.

Solution:

We will use the formula Δydy=y(x0)dx.

y(x)=lnx

x0=1, Δx=dx=0.2,

Δy=y(x)y(x0)ln1.2y(1)0.2;

y(x)=lnxy(x)=1x. Thus, y(x0)=1.

Substituting all the obtained values into the formula Δydy=y(x0)dx, we get ln1.210.2=0.2;

Answer: 0.2.

Homework.

2. Compute approximately:

b) arctan1.04;

Answer: 0.805.

3. Justify the approximate formula x+Δx3x3+Δx3x23 and compute 253 using this formula.

Answer: 2,93.

Tags: calculus, differentials, mathematical analysis