Antiderivative and indefinite integral

The function F(x) is called the antiderivative of the function f(x) defined on some set X if F(x)=f(x) for all xX. If F(x) is an antiderivative of the function f(x), then Φ(x) is also an antiderivative of the same function if and only if Φ(x)=F(x)+C, where C is some constant. The set of all antiderivatives of the function f(x) is called the indefinite integral of this function and is denoted by the symbol.

f(x)dx. Thus, by definition f(x)dx=F(x)+C, where F(x) is one of the antiderivatives of the function f(x) and the constant C takes real values.

Properties of the indefinite integral.

1. (f(x)dx)=f(x).

2. f(x)dx=f(x)+C.

3. af(x)dx=af(x)dx.a0.

4. (f1(x)+f2(x))dx=f1(x)dx+f2(x)dx.

Table of basic indefinite integrals.

1. dx=x+C

2. xαdx=xα+1α+1+C

3. dxx=ln|x|+C

4. axdx=axlna+C

5. exdx=ex+C

6. sinxdx=cosx+C

7. cosxdx=sinx+C

8. dxcos2x=tgx+C

9. dxsin2x=ctgx+C

10. dxa2x2=arcsinxa+C

11. dxx2±a2=ln|x+x2±a2|+C

12. dxx2+a2=1aarctgxa+C

13. dxx2a2=12aln|xax+a|+C

14. shxdx=chx+C

15. chxdx=shx+C

16. dxch2x=thx+C

17. dxsh2x=cthx+C

Examples.

Find the antiderivatives of the following functions:

1. 2x7.

Solution.

From the definition of antiderivative, we need to find a function F(x) such that F(x)=2x7.

(x8)=8x7(14x8)=2x7.

Thus, F(x)=0.25x8, and all antiderivatives of the given function have the form 0.25x8+c.

Answer: 0.25x8+c.

2. x3+5x21x.

Solution.

From the definition of antiderivative, we need to find a function F(x) such that F(x)=x3+5x21x=x2+5x1x.

(x3)=3x2(13x3)=x2;

(x2)=2x(52x2)=5x;

(ln|x|)=1x.

From here, we find F(x)=13x3+52x2ln|x|, and all antiderivatives of the given function have the form 13x3+52x2ln|x|+c.

Answer: 13x3+52x2ln|x|+c.

3. 1a+bx.

Solution.

From the definition of antiderivative, we need to find a function F(x) such that F(x)=1a+bx.

(a+bx)=12a+bx(a+bx)=b2a+bx (2ba+bx)=1a+bx.

Thus, F(x)=2ba+bx, and all antiderivatives of the given function have the form 2ba+bx+c.

Answer: 2ba+bx+c.

4. 1cos24x.

Solution.

From the definition of antiderivative, we need to find a function F(x) such that F(x)=1cos24x.

(tg4x)=1cos24x(4x)=4cos24x(14tg4x)=1cos24x.

Thus, F(x)=14tg4x, and all antiderivatives of the given function have the form 0.25tan4x+c.

Answer: 0.25tan4x+c.

Using the table of basic integrals, find the following integrals:

5.(3x2+2x+1x)dx.

Solution.

(3x2+2x+1x)dx=3x2dx+2xdx+1xdx= =3x33+2x22+ln|x|+c=x3+x2+ln|x|+c.

Answer: x3+x2+ln|x|+c.

6.mxdx.

Solution.

mxdx=mx12dx=mx1/2+11/2+1+c=mx3232+c= =2mx33+c.

Answer: 2mx33+c.

7.(1x23x+1x34)dx.

Solution.

(1x23x+1x34)dx=x2/3dxxx3/4dx1x3/4dx= =x2/3dxx1/4dxx3/4dx= =x2/3+12/3+1x1/4+11/4+1x3/4+13/4+1+c= =3x1/34x5/454x1/4+c=

Answer: 3x345xx44x4+c.

8.2xexdx.

Solution.

2xexdx=(2e)xdx=(2e)xln(2e)+c=(2e)xln2+1+c

Answer: (2e)xln2+1+c.

9.(2x+3cosx)dx.

Solution.

(2x+3cosx)dx=2xdx+3cosxdx=2x22+3sinx+c= =x2+3sinx+c

Answer: x2+3sinx+c.

10.sin2x2dx.

Solution.

sin2x2dx=1cosx2dx=12dx12cosxdx= =0,5x0,5sinx+c.

Answer: 0,5x0,5sinx+c.

11.dxx27.

Solution.

dxx27=ln|x+x27|+c.

Answer: ln|x+x27|+c.

Tags: Antiderivative, Properties of the indefinite integral, Table of integrals, calculus, indefinite integral, integral, mathematical analysis